




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本试卷共=numpages2*24页,第=page2*2-13页本试卷共=numpages2*24页,第=page2*24页圆同步专题知识点一、圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。在同圆或等圆中,能够重合的两条弧叫做等弧。知识点二、平面内点和圆的位置关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内当点在圆外时,d>r;反过来,当d>r时,点在圆外。当点在圆上时,d=r;反过来,当d=r时,点在圆上。当点在圆内时,d<r;反过来,当d<r时,点在圆内。知识点三、圆的基本性质1圆是轴对称图形,其对称轴是任意一条过圆心的直线。2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。圆周角定理推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。圆周角定理推论2:直径所对的圆周角是直角;90°的圆周角所对的弦是直径。1.在一个______内,线段OA绕它固定的一个端点O______,另一个端点A所形成的______叫做圆.这个固定的端点O叫做______,线段OA叫做______.以O点为圆心的圆记作______,读作______.2.由圆的定义可知:(1)圆上的各点到圆心的距离都等于________;在一个平面内,到圆心的距离等于半径长的点都在________.因此,圆是在一个平面内,所有到一个________的距离等于________的________组成的图形.(2)要确定一个圆,需要两个基本条件,一个是________,另一个是________,其中,________确定圆的位置,______确定圆的大小.3.连结______________的__________叫做弦.经过________的________叫做直径.并且直径是同一圆中__________的弦.4.圆上__________的部分叫做圆弧,简称________,以A,B为端点的弧记作________,读作________或________.5.圆的________的两个端点把圆分成两条弧,每________都叫做半圆.6.在一个圆中_____________叫做优弧;_____________叫做劣弧.7.半径相等的两个圆叫做____________.【练习题】8.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.9.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.10.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,求∠C及∠AOC的度数.11.已知:如图,△ABC,试用直尺和圆规画出过A,B,C三点的⊙O.练习2垂直于弦的直径【基础知识填空】1.圆是______对称图形,它的对称轴是______________________;圆又是______对称图形,它的对称中心是____________________.2.垂直于弦的直径的性质定理是____________________________________________.3.平分________的直径________于弦,并且平分________________【练习题】4.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.5.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.6.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______.7.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.8.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD的距离是______.9.如图,P为⊙O的弦AB上的点,PA=6,PB=2,⊙O的半径为5,则OP=______.10.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.11.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长.12.已知:如图,试用尺规将它四等分.13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=10寸).14.已知:⊙O的半径OA=1,弦AB、AC的长分别为,,求∠BAC的度数.练习3弧、弦、圆心角【基础知识填空】1.__________________________叫做圆心角.2.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦,如果其中有一组量相等,那么_______________.3.在圆中,叫做弦心距.4.在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么_____________________.【练习题】5.已知:如图,A、B、C、D在⊙O上,AB=CD.求证:∠AOC=∠DOB.6.已知:如图,P是∠AOB的角平分线OC上的一点,⊙P与OA相交于E,F点,与OB相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结论.7.已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,求∠ACO的度数.8.⊙O中,M为的中点,则下列结论正确的是().A.AB>2AM B.AB=2AMC.AB<2AM D.AB与2AM的大小不能确定9.如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想与之间的关系,并证明你的猜想.10.已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.练习4圆周角【基础知识填空】1._________在圆上,并且角的两边都_________的角叫做圆周角.2.在同一圆中,一条弧所对的圆周角等于_________圆心角的_________.3.在同圆或等圆中,____________所对的圆周角____________.4._________所对的圆周角是直角.90°的圆周角______是直径.拓展:【练习题】5.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.6.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.7.如图,ΔABC是⊙O的内接正三角形,若P是上一点,则∠BPC=______;若M是上一点,则∠BMC=______.8.在⊙O中,若圆心角∠AOB=100°,C是上一点,则∠ACB等于().A.80° B.100° C.130° D.140°9.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于().A.13° B.79° C.38.5° D.101°10.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于().A.64°B.48°C.32°D.76°11.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于().A.37° B.74° C.54° D.64°12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于().A.69° B.42° C.48° D.38°13.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O的直径,BD交AC于点E,连结DC,则∠AEB等于().A.70° B.90° C.110° D.120°14.已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.15.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.16.已知:如图,⊙O的直径AE=10cm,∠B=∠EAC.求AC的长.1.如图:四边形ABCD是⊙O的内接梯形,AD∥BC,对角线AC、BD相交于点E,求证:OE平分∠BEC。2.在半径为5cm的⊙O中,AB=6cm,CD=8cm,且AB∥CD,求AC和CD之间的距离。3.如图是一个弓形零件的截面图。已知弓形高为9cm,弦长为6cm,求弓形所在圆的半径。4.如图,O为ADB弧的圆心,,弓形高ND=2cm,矩形EFGH的顶点E,F在弦AB上,H,G在AB弧上,且EF=4HE.求EF的长。5.已知在以O为圆心,直径分别为10cm和16cm的两个同心圆中有点P,OP=4cm,过点P分别作大圆的弦AB,小圆有弦CD,求AB的最大值与CD的最小值的和。6.一条弧所对的圆心角有几个,圆周角有几个?一条弦呢?若一条弦把圆周分成1:5两部分,则该弦所对的圆心角度数?圆周角度数?所对的劣弧所含的圆周角的度数?7..如图,圆内角、圆外角与它所对弧的关系?(1)若=35,=25,求∠AEB;(2)若P=40,==,求∠ACD8.如图,已知在⊙O中,弦AB⊥CD于E,AE=2,EB=8,CAD弧的度数为120,求⊙O的半径。9.如图,在⊙O中,AB弧的度数为100,把弦AB绕圆心旋转60,得到线段,交AB于D.画OC⊥AB,,C,分别为垂足,连结C。(1)求证:;(2)求证:;(3)求的度数和的度数10.如图,⊙O中,AB是直径,半径CO⊥AB,D是CO的中点,DE//AB,求证:EC=2EA.11.已知BC为半圆O的直径,AB=AF,AC交BF于点M,过A点作AD⊥BC于D,交BF于E,则AE与BE的大小有什么关系?为什么?12.如图,等边△ABC内接于⊙O,D是BC弧上一点,连结AD、CD、BD,并在AD上截取AE=CD,连结BE,求证:(1)△ABE≌△CBD;(2)AD=BD+CD.13.如图ABC是⊙O的一条折弦,BC>AB,D是ABC弧的中点,DE⊥BC,垂足为E,(1)求证:CE=BE+AB.(2)若连结DC、DB,则DC2-DB2=AB•BC.14.如图,AD是△ABC的高线,AE是△ABC的外接圆的直径,求证:∠BAE=∠DAC.变题(1)如图,△ABC内接于⊙O,AH⊥BC,垂足为H,AD平分∠BAC,交⊙O于D.求证:AD平分∠HAO.(2)已知如图△ABC内接于⊙O,AD⊥BE于D,BE⊥AC于E,AD,BE交于点F,延长AD交⊙O于求证:BG=BF(3)如图,△ABC内接于⊙O,A的平分线与⊙O交于D,DE⊥AB于E,DF⊥AC于F。求证BE=CF15.如图,⊙O是ABC的外接圆,,AD,CE分别是BC,AB上的高,且AD,CE交于点H,求证:AH=AO类题(1)如图,在⊙O中,弦AC⊥BD,OE⊥AB,垂足为E,求证:OE=e
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专项药品管理制度
- 个人经费管理制度
- 中介贷款管理制度
- 中国疫情管理制度
- 中国质量管理制度
- 中学减塑管理制度
- 中学文秘管理制度
- 中学资产管理制度
- 中小薪酬管理制度
- 中心完善管理制度
- 网络舆情分析模型-全面剖析
- 课题申报书:生成式人工智能赋能高校体育教师教学能力的内在机理与实践路径研究
- 信誉楼管理制度特色
- 登山安全培训课件内容
- 防沙治沙光伏一体化技术方案设计
- 2025年春新北师大版生物七年级下册课件 第11章 人体的运动 第1节 人体的骨骼
- 便携式移动电源规范
- 实验室生物安全评估制度(4篇)
- 【MOOC】《电路原理》(东北大学)中国大学慕课答案
- 儿康家长培训内容
- 2024年商城县人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
评论
0/150
提交评论