版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第7章二次函数(易错必刷40题11种题型专项训练)二次函数的图象待定系数法求二次函数解析式二次函数的性质二次函数与x轴交点二次函数图象与系数的关系二次函数与不等式(组)二次函数图象上点的坐标特征二次函数应用二次函数图象与几何变换二次函数综合题二次函数的最值一.二次函数的图象(共2小题)1.函数y=与y=﹣kx2+k(k≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.【答案】B【解答】解:解法一:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.解法二:①k>0,双曲线在一、三象限,﹣k<0,抛物线开口向下,顶点在y轴正半轴上,选项B符合题意;②K<0时,双曲线在二、四象限,﹣k>0,抛物线开口向上,顶点在y轴负半轴上,选项B符合题意;故选:B.2.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A. B. C. D.【答案】C【解答】解:由方程组得ax2=﹣a,∵a≠0∴x2=﹣1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选:C.二.二次函数的性质(共6小题)3.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x﹣1013y﹣1353下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个 B.3个 C.2个 D.1个【答案】B【解答】解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x≥1.5时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.4.若二次函数y=(x﹣m)2﹣1,当x≤1时,y随x的增大而减小,则m的取值范围是()A.m=1 B.m>1 C.m≥1 D.m≤1【答案】C【解答】解:∵二次函数y=(x﹣m)2﹣1,中,a=1>0,∴此函数开口向上,∵当x≤1时,函数值y随x的增大而减小,∴二次函数的对称轴x=m≥1.故选:C.5.已知二次函数y=x2﹣2x+3,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值11,有最小值3 B.有最大值11,有最小值2 C.有最大值3,有最小值2 D.有最大值3,有最小值1【答案】B【解答】解:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该函数的对称轴是直线x=1,函数图象开口向上,∴在﹣2≤x≤2的取值范围内,当x=﹣2时取得最大值11,当x=1时,取得最小值2,故选:B.6.下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是()A.点(0,2)在函数图象上 B.开口方向向上 C.对称轴是直线x=1 D.与直线y=3x有两个交点【答案】D【解答】解:A、把x=0代入y=3(x+1)(2﹣x),得y=6≠2,∴A错误;B、化简二次函数:y=﹣3x2+3x+6,∵a=﹣3<0,∴二次函数的图象开口方向向下,∴B错误;C、∵二次函数对称轴是直线x=﹣=,∴C错误;D、∵3(x+1)(2﹣x)=3x,∴﹣3x2+3x+6=3x,∴﹣3x2+6=0,∵b2﹣4ac=72>0,∴二次函数y=3(x+1)(2﹣x)的图象与直线y=3x有两个交点,∴D正确;故选:D.7.如图,已知在平面直角坐标系xOy中,抛物线y=(x﹣3)2﹣与y轴交于点A,顶点为B,直线l:y=﹣x+b经过点A,与抛物线的对称轴交于点C,点P是对称轴上的一个动点,若AP+PC的值最小,则点P的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,)【答案】B【解答】解:如图,过点C作CD⊥y轴于D,作点A关于抛物线对称轴的对称点A’,连接AA’,CA’,过点A作AE⊥CA’交抛物线对称轴于点P,此时点A到A’C距离最小∵抛物线y=∴A(0,5),A′(6,5)∵直线l:y=﹣+b∴C(3,1),D(0,1)∵∠ACP=∠ECP∴Sin∠ECP=Sin∠ACP==∴AP+PC=AP+Sin∠ECP•PC=AP+PE∴当A、P、E三点共线时AP+PC最小.∴∠A′AP=∠ECP=∠ACP∴PF=AF•tan∠FAP=3×=∴P(3,).故选:B.8.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是﹣6、﹣.【答案】见试题解答内容【解答】解:当x≥1时,函数y=x2﹣3|x﹣1|﹣4x﹣3=x2﹣7x,图象的一个端点为(1,﹣6),顶点坐标为(,﹣),当x<1时,函数y=x2﹣3|x﹣1|﹣4x﹣3=x2﹣x﹣6,顶点坐标为(,﹣),∴当b=﹣6或b=﹣时,两图象恰有三个交点.故本题答案为:﹣6,﹣.三.二次函数图象与系数的关系(共5小题)9.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③ B.②③⑤ C.②③④ D.③④⑤【答案】B【解答】解:①∵对称轴在y轴的右侧,∴ab<0,由图象可知:c>0,∴abc<0,故①不正确;②当x=﹣1时,y=a﹣b+c<0,∴b﹣a>c,故②正确;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④∵x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴a+2a+c<0,3a<﹣c,故④不正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c(m≠1),故a+b>am2+bm,即a+b>m(am+b),故⑤正确.故②③⑤正确.故选:B.10.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且OB=OC,下列结论:①b>1且b≠2;②b2﹣4ac<4a2;③a>;其中正确的个数为()A.0 B.1 C.2 D.3【答案】D【解答】解:①∵OB=OC,∴C(0,c),B(﹣c,0)把B(﹣c,0)代入y=ax2+bx+c得0=ac2﹣bc+c,即0=ac2+c(1﹣b),∵a>0,∴1﹣b<0,即b>1,如果b=2,由0=ac2﹣bc+c,可得ac=1,此是Δ=b2﹣4ac=0,故b>1且b≠2正确,②∵a>0,b>0,c>0,设C(0,c),B(﹣c,0)∵AB=|x1﹣x2|<2,∴(x1+x2)2﹣4x1x2<4,∴(﹣)2﹣4×<4,即﹣<4,∴b2﹣4ac<4a2;故本项正确.③把B(﹣c,0)代入y=ax2+bx+c可得ac+1=b,代入y=ax2+bx+c得y=ax2+(ac+1)x+c=ax2+acx+x+c=ax2+x+acx+c=x(ax+1)+c(ax+1)=(x+c)(ax+1),解得x1=﹣c,x2=﹣,由图可得x1,x2>﹣2,即﹣>﹣2,∵a>0,∴<2,∴a>;正确.所以正确的个数是3个.故选:D.11.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是()A.①③ B.①③④ C.①②③ D.①②③④【答案】C【解答】解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①正确;②当x=时,y=0,即a+b+c=0,∴a+2b+4c=0,∴a+4c=﹣2b,∴a﹣2b+4c=﹣4b>0,所以②正确;③因为对称轴x=﹣1,抛物线与x轴的交点(,0),所以与x轴的另一个交点为(﹣,0),当x=﹣时,a﹣b+c=0,∴25a﹣10b+4c=0.所以③正确;④当x=时,a+2b+4c=0,又对称轴:﹣=﹣1,∴b=2a,a=b,b+2b+4c=0,∴b=﹣c.∴3b+2c=﹣c+2c=﹣c<0,∴3b+2c<0.所以④错误.或者∵当x=1时,a+b+c<0,∴c<﹣a﹣b,又∵b=2a,∴a=b,∴c<﹣b,∴2c<﹣3b,∴2c+3b<0,∴结论④错误故选:C.12.已知二次函数y=x2+2x+2m﹣1的图象只经过三个象限,则m的取值范围是()A.m<1 B.m≥ C.<m<1 D.≤m<1【答案】D【解答】解:∵二次函数y=x2+2x+2m﹣1的图象只经过三个象限,∴开口方向向上,其对称轴为x=﹣1,则<0,2m﹣1≥0,解得≤m<1.如图:故选:D.13.如图,抛物线y=ax2+bx+c的对称轴是直线x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是①③⑤.(填写正确结论的序号)【答案】见试题解答内容【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是直线x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(,0),当x=﹣时,y=0,即,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,∴25a﹣20a+4c=0,∴5a+4c=0,即c=﹣a;∵b=2a,a+b+c<0,∴,即3b+2c<0,故④错误;由二次函数的性质可知,当x=﹣1时,y取最大值,∴对任意﹣m的值,满足a﹣b+c≥am2﹣bm+c,整理得,a﹣b≥m(am﹣b);故⑤正确;故答案为:①③⑤.四.二次函数图象上点的坐标特征(共2小题)14.已知二次函数y=ax2﹣2ax+1(a<0)图象上三点A(﹣1,y1),B(2,y2)C(4,y3),则y1、y2、y3的大小关系为()A.y1<y2<y3 B.y2<y1<y3 C.y1<y3<y2 D.y3<y1<y2【答案】D【解答】解:y=ax2﹣2ax+1(a<0),对称轴是直线x=﹣=1,即二次函数的开口向下,对称轴是直线x=1,即在对称轴的右侧y随x的增大而减小,A点关于直线x=1的对称点是D(3,y1),∵2<3<4,∴y2>y1>y3,故选:D.15.抛物线y=ax2+bx+2经过点(﹣2,3),则3b﹣6a=.【答案】见试题解答内容【解答】解:把点(﹣2,3)代入y=ax2+bx+2得:4a﹣2b+2=3,2b﹣4a=﹣1,3b﹣6a=﹣,故答案为:﹣.五.二次函数图象与几何变换(共2小题)16.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1 C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣1【答案】B【解答】解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.17.将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是()A.(0,3)或(﹣2,3) B.(﹣3,0)或(1,0) C.(3,3)或(﹣1,3) D.(﹣3,3)或(1,3)【答案】D【解答】解:将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线为y=x2+2x当该抛物线与直线y=3相交时,x2+2x=3解得:x1=﹣3,x2=1则交点坐标为:(﹣3,3)(1,3)故选:D.六.二次函数的最值(共4小题)18.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5 B.﹣4和5 C.﹣4和﹣3 D.﹣1和5【答案】B【解答】解:∵二次函数y=(x+1)2﹣4,对称轴是:x=﹣1∵a=1>0,∴x>﹣1时,y随x的增大而增大,x<﹣1时,y随x的增大而减小,由图象可知:在﹣2≤x≤2内,x=2时,y有最大值,y=(2+1)2﹣4=5,x=﹣1时y有最小值,是﹣4,故选:B.19.当1≤x≤3时,二次函数y=x2﹣2ax+3的最小值为﹣1,则a的值为()A.2 B.±2 C.2或 D.2或【答案】A【解答】解:y=x2﹣2ax+3=(x﹣a)2+3﹣a2.抛物线开口向上,对称轴为直线x=a.∴当a≤1时,若1≤x≤3时,y随x的增大而增大,当x=1时,y有最小值=1﹣2a+3=4﹣2a,∴4﹣2a=﹣1,∴a=,不合题意,舍去.当1<a≤3时,x=a,y有最小值3﹣a2.∴3﹣a2=﹣1.∴a2=4,∵1≤a≤3,∴a=2.当a≥3时,若1≤x≤3,y随x的增大而减小.∴当x=3时,y有最小值=9﹣6a+3=12﹣6a.∴12﹣6a=﹣1.∴a=.∵a≥3.∴不合题意,舍去.综上:a=2.故选A.20.当﹣1≤x≤2时,二次函数y=x2+2kx+1的最小值是﹣1,则k的值可能是或﹣.【答案】见试题解答内容【解答】解:对称轴:x=﹣=﹣k,分三种情况讨论:①当﹣k<﹣1时,即k>1时,此时﹣1≤x≤2在对称轴的右侧,y随x的增大而增大,∴当x=﹣1时,y有最小值,y小=(﹣1)2+2k×(﹣1)+1=﹣1,k=,②当﹣1≤﹣k≤2时,即﹣2≤k≤1,对称轴在﹣1≤x≤2内,此时函数在﹣1≤x≤﹣k,y随x的增大而减小,在﹣k≤x≤2时,y随x的增大而增大,∴当x=﹣k时,y有最小值,y小=(﹣k)2+2k•(﹣k)+1=﹣1,k2﹣2k2+2=0,k2﹣2=0,k=,∵﹣2≤k≤1,∴k=﹣,③当﹣k>2时,即k<﹣2,此时﹣1≤x≤2在对称轴的左侧,y随x的增大而减小,∴当x=2时,y有最小值,y小=22+2k×2+1=﹣1,k=﹣(舍),综上所述,k的值可能是或﹣,故答案为:或﹣.21.二次函数y=ax2+4x+a的最大值是3,则a的值是﹣1.【答案】见试题解答内容【解答】解:由题意得,=3,整理得,a2﹣3a﹣4=0,解得a1=4,a2=﹣1,∵二次函数有最大值,∴a<0,∴a=﹣1.故答案为:﹣1.七.待定系数法求二次函数解析式(共1小题)22.已知二次函数的图象经过原点及点(﹣2,﹣2),且图象与x轴的另一个交点到原点的距离为4,那么该二次函数的解析式为y=x2+2x或y=﹣x2+x.【答案】见试题解答内容【解答】解:∵图象与x轴的另一个交点到原点的距离为4,∴这个交点坐标为(﹣4,0)、(4,0),设二次函数解析式为y=ax2+bx+c,①当这个交点坐标为(﹣4,0)时,,解得,所以二次函数解析式为y=x2+2x,②当这个交点坐标为(4,0)时,,解得,所以二次函数解析式为y=﹣x2+x,综上所述,二次函数解析式为y=x2+2x或y=﹣x2+x.故答案为:y=x2+2x或y=﹣x2+x.八.抛物线与x轴的交点(共4小题)23.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣或﹣12 B.﹣或2 C.﹣12或2 D.﹣或﹣12【答案】A【解答】解:如图所示,过点B的直线y=2x+b与新图象有三个公共点,将直线向下平移到恰在点C处相切,此时与新图象也有三个公共点,令y=x2﹣5x﹣6=0,解得:x=﹣1或6,即点B坐标(6,0),将一次函数与二次函数表达式联立得:x2﹣5x﹣6=2x+b,整理得:x2﹣7x﹣6﹣b=0,Δ=49﹣4(﹣6﹣b)=0,解得:b=﹣,当一次函数过点B时,将点B坐标代入:y=2x+b得:0=12+b,解得:b=﹣12,综上,直线y=2x+b与这个新图象有3个公共点,则b的值为﹣12或﹣;故选:A.24.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3 B.k<4且k≠3 C.k<4 D.k≤4【答案】D【解答】解:当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当22﹣4(k﹣3)≥0,k≤4即k≤4时,函数的图象与x轴有交点.综上k的取值范围是k≤4.故选:D.25.已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为1或﹣.【答案】1或﹣.【解答】解:当m=0时,y=﹣1,与坐标轴只有一个交点,不符合题意.当m≠0时,∵函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,①过坐标原点,m﹣1=0,m=1,②与x、y轴各一个交点,∴Δ=0,m≠0,(3m)2﹣4m(m﹣1)=0,解得m=0(舍去)或m=﹣,综上所述:m的值为1或﹣.26.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是4.【答案】见试题解答内容【解答】解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤是不正确的;故答案为:4九.二次函数与不等式(组)(共1小题)27.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m的解集为x<1或x>3.【答案】见试题解答内容【解答】解:∵直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),∴根据图象可知,不等式x2+bx+c>x+m的解集为x<1或x>3;故答案为:x<1或x>3.一十.二次函数的应用(共5小题)28.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?【答案】见试题解答内容【解答】解:(1)设每件衬衫降价x元,商场平均每天盈利y元,则y=(40﹣x)(20+2x)=800+80x﹣20x﹣2x2=﹣2x2+60x+800,当y=1200时,1200=(40﹣x)(20+2x),解得x1=10,x2=20,经检验,x1=10,x2=20都是原方程的解,但要尽快减少库存,所以x=20,答:每件衬衫应降价20元;(2)∵y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∴当x=15时,y的最大值为1250,答:当每件衬衫降价15元时,专卖店每天获得的利润最大,最大利润是1250元.29.红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对:物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?【答案】见试题解答内容【解答】解:(1)设甲种灯笼单价为x元/对,则乙种灯笼的单价为(x+9)元/对,由题意得:=,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对.(2)①y=(50+x﹣35)(98﹣2x)=﹣2x2+68x+1470,答:y与x之间的函数解析式为:y=﹣2x2+68x+1470.②∵a=﹣2<0,∴函数y有最大值,该二次函数的对称轴为:x=﹣=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,∴当x=15时,y最大=2040.15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.30.如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?【答案】见试题解答内容【解答】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,∵y=﹣0.2x2+3.5,而球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2.答:球出手时,他跳离地面的高度为0.2m.31.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?【答案】见试题解答内容【解答】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH﹣OH=4﹣3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式为:y=kx2+1,把点D(2,0)代入,得k=﹣,∴该抛物线的函数表达式为:y=﹣x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=,∴N(1,),∴MN=,∴S矩形MNFG=MN•GM=×2=,∴每个B型活动板房的成本是:425+×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n﹣500)[100+]=﹣2(n﹣600)2+20000,∵每月最多能生产160个B型活动板房,∴100+≤160,解得n≥620,∵﹣2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有最大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.32.某企业接到一批帽子生产任务,按要求在20天内完成,约定这批帽子的出厂价为每顶8元.为按时完成任务,该企业招收了新工人,设新工人小华第x天生产的帽子数量为y顶,y与x满足如下关系式:y=(1)小华第几天生产的帽子数量为220顶?(2)如图,设第x天每顶帽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若小华第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多49元,则第(m+1)天每顶帽子至少应提价几元?【答案】见试题解答内容【解答】解:(1)若20x=220,则x=11,与0≤x≤5不符,∴10x+100=220,解得,x=12,故第12天生产了220顶帽子;(2)由图象得,当0≤x≤10时,P=5.2;当10<x≤20时,设P=kx+b(k≠0),把(10,5.2),(20,6.2)代入上式,得,解得,,∴P=0.1x+4.2①0≤x≤5时,w=y(8﹣P)=20x(8﹣5.2)=56x,当x=5时,w有最大值为w=280,②5<x≤10时,w=y(8﹣P)=(10x+100)(8﹣5.2)=28x+280,当x=10时,w有最大值,最大值为560(元);③10<x≤20时,w=y(8﹣P)=(10x+100)[8﹣(0.1x+4.2)]=﹣x2+28x+380,当x=14时,w有最大值,最大值为576(元).综上,第14天时,利润最大,最大值为576元.(3)由(2)小题可知,m=14,m+1=15,设第15天提价a元,由题意得w=y(8+a﹣P)=(10x+100)[8+a﹣(0.1x+4.2)]=250(2.3+a),∴250(2.3+a)﹣576≥49,∴a≥0.2.答:第15天每顶帽子至少应提价0.2元.十一.二次函数综合题(共8小题)33.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.【答案】见试题解答内容【解答】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F,∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①分OC与CD是对应边时,∵△DOC∽△PDC,∴=,即=,解得DP=,过点P作PG⊥y轴于点G,则==,即==,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣2);②OC与DP是对应边时,∵△DOC∽△CDP,∴=,即=,解得DP=3,过点P作PG⊥y轴于点G,则==,即==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).34.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得,所以二次函数的解析式为:y=,(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DG⊥x轴于G,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×(AG+EH)=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求PA2=9+n2,PE2=1+(n+2)2,AE2=16+4=20,当PA2=PE2时,9+n2=1+(n+2)2,解得,n=1,此时P(﹣1,1);当PA2=AE2时,9+n2=20,解得,n=,此时点P坐标为(﹣1,);当PE2=AE2时,1+(n+2)2=20,解得,n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述,P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).35.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)如图:①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入直线BC解析式y=kx+b,得k=﹣1,b=3,所以直线BC解析式为yBC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+3=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,∴EN=CN=2,∴EC=2,根据菱形的四条边相等,∴ME=EC=2,∴M(2,1﹣2)或(2,1+2),当EM=EN=2时,M(2,3),答:点M的坐标为M1(2,3)或M2(2,1﹣2)或M3(2,1+2).36.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)由对称性得:A(﹣1,0),设抛物线的解析式为:y=a(x+1)(x﹣2),把C(0,4)代入:4=﹣2a,a=﹣2,∴y=﹣2(x+1)(x﹣2),∴抛物线的解析式为:y=﹣2x2+2x+4;(2)如图1,设点P(m,﹣2m2+2m+4),过P作PD⊥x轴,垂足为D,∴S=S梯形+S△PDB=m(﹣2m2+2m+4+4)+(﹣2m2+2m+4)(2﹣m),S=﹣2m2+4m+4=﹣2(m﹣1)2+6,∵﹣2<0,∴S有最大值,则S大=6;(3)存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,理由是:分以下两种情况:①当∠BQM=90°时,如图2:∵∠CMQ>90°,∴只能CM=MQ.设直线BC的解析式为:y=kx+b(k≠0),把B(2,0)、C(0,4)代入得:,解得:,∴直线BC的解析式为:y=﹣2x+4,设M(m,﹣2m+4),则MQ=﹣2m+4,OQ=m,BQ=2﹣m,在Rt△OBC中,BC===2,∵MQ∥OC,∴△BMQ∽△BCO,∴,即,∴BM=(2﹣m)=2﹣m,∴CM=BC﹣BM=2﹣(2﹣m)=m,∵CM=MQ,∴﹣2m+4=m,m==4﹣8.∴Q(4﹣8,0).②解法一:当∠QMB=90°时,如图3,由①得:QM=CM=m,BM=2﹣m,∵△QMB∽△COB,∴,∴==,∴m=,∴QB=,∴OQ=﹣2=,∴Q(﹣,0).解法二:当∠QMB=90°时,如图4,过M作MF⊥OB于F,由①得:QM=CM=m,设Q(n,0),则QF=m﹣n,MF=﹣2m+4,∵△MQF∽△BCO,∴,∴==,∴,∴Q(﹣,0).综上所述,Q点坐标为(4﹣8,0)或(﹣,0).37.如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.(1)A,B,C三点的坐标为(﹣2,0),(3,0),(0,4).(2)连接AP,交线段BC于点D,①当CP与x轴平行时,求的值;②当CP与x轴不平行时,求的最大值;(3)连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m的值,若不存在,请说明理由.【答案】(1)(﹣2,0);(3,0);(0,4).(2).②.(3)存在,m=.【解答】解:(1)令x=0,则y=4,∴C(0,4);令y=0,则﹣x2+x+4=0,∴x=﹣2或x=3,∴A(﹣2,0),B(3,0).故答案为:(﹣2,0);(3,0);(0,4).(2)①∵CP∥x轴,C(0,4),∴P(1,4),∴CP=1,AB=5,∵CP∥x轴,∴==.②如图,过点P作PQ∥AB交BC于点Q,∴直线BC的解析式为:y=﹣x+4.设点P的横坐标为m,则P(m,﹣m2+m+4),Q(m2﹣m,﹣m2+m+4).∴PQ=m﹣(m2﹣m)=﹣m2+m,∵PQ∥AB,∴===﹣(m﹣)2+,∴当m=时,的最大值为.另解:分别过点P,A作y轴的平行线,交直线BC于两点,仿照以上解法即可求解.(3)假设存在点P使得∠BCO+2∠BCP=90°,即0<m<3.过点C作CF∥x轴交抛物线于点F,∵∠BCO+2∠PCB=90°,∠BCO+∠BCM+∠MCF=90°,∴∠MCF=∠BCP,延长CP交x轴于点M,∵CF∥x轴,∴∠PCF=∠BMC,∴∠BCP=∠BMC,∴△CBM为等腰三角形,∵BC=5,∴BM=5,OM=8,∴M(8,0),∴直线CM的解析式为:y=﹣x+4,令﹣x2+x+4=﹣x+4,解得x=或x=0(舍),∴存在点P满足题意,此时m=.38.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴正半轴交于点A(4,0),与y轴交于点B(0,2),点C在该抛物线上且在第一象限.(1)求该抛物线的表达式;(2)将该抛物线向下平移m个单位,使得点C落在线段AB上的点D处,当AD=3BD时,求m的值;(3)连接BC,当∠CBA=2∠BAO时,求点C的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2;(2)m=;(3)C(2,3).【解答】解:(1)把点A(4,0)和点B(0,2)代入抛物线y=﹣x2+bx+c中得:,解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)如图1,过点D作DG⊥x轴于G,∴DG∥OB,∴△ADG∽△ABO,∴,∵AD=3BD,∴AG=3OG,∵A(4,0),B(0,2),∴OA=4,OB=2,∴OG=1,DG=,∵D(1,),由平移得:点C的横坐标为1,当x=1时,y=﹣×1+×1+2=3,∴m=3﹣=;(3)∵∠CBA=2∠BAO,点C在该抛物线上且在第一象限,∴点C在AB的上方,如图2,过A作AF⊥x轴于A,交BC的延长线于点F,过B作BE⊥AF于点E,∴BE∥OA,∴∠BAO=∠ABE,∵∠CBA=2∠BAO=∠ABE+∠EBF,∴∠FBE=∠ABE,∵∠BEF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 坐姿娃娃产品供应链分析
- 生产香料制品用香精油项目运营指导方案
- 衣领项目营销计划书
- 蓄电池市场分析及投资价值研究报告
- 含药物的护足霜产业链招商引资的调研报告
- 心理咨询行业营销策略方案
- 玻璃器皿用纸制杯垫项目运营指导方案
- 医用防尘卫生口罩产品供应链分析
- 穿戴式扬声器产品供应链分析
- 举办水球比赛行业经营分析报告
- 绩效考核及薪酬机制和执行情况审计报告模板
- 组分模型与pvti模块拟合
- 黑色素瘤诊断与治疗演示课件(PPT 38页)
- 高中数学奥赛辅导:第四讲不定方程
- 02 明渠均匀流断面尺寸设计
- 第八讲 matlab simulink基础.
- 创伤急救周围血管损伤
- 通力电梯KCE电气系统学习指南
- 电子商务师_4级_理论知识题库-判断题-全部判断题
- 苗木材料报审及进场清单
- 肾移植术的解剖(1)
评论
0/150
提交评论