版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年吉林省博文中学高三第二次月考试题数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则(
)A.10 B.11 C.12 D.132.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为()A. B. C. D.3.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()A. B. C. D.4.已知函数()的部分图象如图所示,且,则的最小值为()A. B.C. D.5.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为176,320,则输出的a为()A.16 B.18 C.20 D.156.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是()A. B. C. D.7.设函数,当时,,则()A. B. C.1 D.8.若点是角的终边上一点,则()A. B. C. D.9.已知,满足约束条件,则的最大值为A. B. C. D.10.如图,在正方体中,已知、、分别是线段上的点,且.则下列直线与平面平行的是()A. B. C. D.11.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.12.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则_____,(的值为______.14.函数的极大值为________.15.如图,在等腰三角形中,已知,,分别是边上的点,且,其中且,若线段的中点分别为,则的最小值是_____.16.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.18.(12分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.19.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.20.(12分)如图,底面是等腰梯形,,点为的中点,以为边作正方形,且平面平面.(1)证明:平面平面.(2)求二面角的正弦值.21.(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.22.(10分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上.求椭圆C的方程;若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值.【详解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故选:B.本题主要考查了分段函数中求函数的值,属于基础题.2.B【解析】
函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围.【详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B.本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围.3.B【解析】
因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B本题主要考查正负角的定义以及弧度制,属于基础题.4.A【解析】
是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.【详解】由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,∴的最小值是.故选:A.本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.5.A【解析】
根据题意可知最后计算的结果为的最大公约数.【详解】输入的a,b分别为,,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,,,,,,,易得176和320的最大公约数为16,故选:A.本题考查的是利用更相减损术求两个数的最大公约数,难度较易.6.A【解析】
先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,,解得,.因为为偶函数,故直线为其图象的对称轴,令,,故,,因为,故,当时,.故选:A.本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题.7.A【解析】
由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.【详解】,时,,,∴,由题意,∴.故选:A.本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.8.A【解析】
根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.9.D【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.10.B【解析】
连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解.【详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.11.B【解析】
据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.12.D【解析】
利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13.7201【解析】
利用二项展开式的通式可求出;令中的,得两个式子,代入可得结果.【详解】利用二项式系数公式,,故,,故(=,故答案为:720;1.本题考查二项展开式的通项公式的应用,考查赋值法,是基础题.14.【解析】
对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.15.【解析】
根据条件及向量数量积运算求得,连接,由三角形中线的性质表示出.根据向量的线性运算及数量积公式表示出,结合二次函数性质即可求得最小值.【详解】根据题意,连接,如下图所示:在等腰三角形中,已知,则由向量数量积运算可知线段的中点分别为则由向量减法的线性运算可得所以因为,代入化简可得因为所以当时,取得最小值因而故答案为:本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.16.【解析】
设圆柱的轴截面的边长为x,可求得,代入圆柱的表面积公式,即得解【详解】设圆柱的轴截面的边长为x,则由,得,∴.故答案为:本题考查了圆柱的轴截面和表面积,考查了学生空间想象,转化划归,数学运算的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)见解析【解析】
(1)对函数求导,对参数讨论,得函数单调区间,进而求出极值;(2)是方程的两根,代入方程,化简换元,构造新函数利用函数单调性求最值可解.【详解】(1)依题意,;若,则,则函数在上单调递增,此时函数既无极大值,也无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;(2)依题意,,则,,故,;要证:,即证,即证:,即证,设,只需证:,设,则,故在上单调递增,故,即,故.本题考查函数极值及利用导数证明二元不等式.证明二元不等式常用方法是转化为证明一元不等式,再转化为函数最值问题.利用导数证明不等式的基本方法:(1)若与的最值易求出,可直接转化为证明;(2)若与的最值不易求出,可构造函数,然后根据函数的单调性或最值,证明.18.(1);(2).【解析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦定理可得,结合,可求,从而可求的值;(2)由三角形的面积可解得,利用余弦定理可得,故可得.试题解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.19.(1);(2).【解析】
(1)分类讨论去绝对值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范围,判断,为正,去掉绝对值,转化为在时恒成立,得到,,在恒成立,从而得到的取值范围.【详解】(1)当时,,由,得,即,或,即,或,即,综上:或,所以不等式的解集为.(2),,因为,,所以,又,,,得.不等式恒成立,即在时恒成立,不等式恒成立必须,,解得.所以,解得,结合,所以,即的取值范围为.本题考查分类讨论解绝对值不等式,含有绝对值的不等式的恒成立问题.属于中档题.20.(1)见解析;(2)【解析】
(1)先证明四边形是菱形,进而可知,然后可得到平面,即可证明平面平面;(2)记AC,BE的交点为O,再取FG的中点P.以O为坐标原点,以射线OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系,分别求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,进而可求出二面角的正弦值.【详解】(1)证明:因为点为的中点,,所以,因为,所以,所以四边形是平行四边形,因为,所以平行四边形是菱形,所以,因为平面平面,且平面平面,所以平面.因为平面,所以平面平面.(2)记AC,BE的交点为O,再取FG的中点P.由题意可知AC,BE,OP两两垂直,故以O为坐标原点,以射线OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系.因为底面ABCD是等腰梯形,,所以四边形ABCE是菱形,且,所以,则,设平面ABF的法向量为,则,不妨取,则,设平面DBF的法向量为,则,不妨取,则,故.记二面角的大小为,故.本题考查了面面垂直的证明,考查了二面角的求法,利用空间向量求平面的法向量是解决空间角问题的常见方法,属于中档题.21.(1).x2+y2=1.(2)16【解析】
(1)直接利用极坐标方程和参数方程公式化简得到答案.(2)圆心到直线的距离为,故弦长为得到答案.【详解】(1),即,即,即.,故.(2)圆心到直线的距离为,故弦长为.本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.22.(1);(2)或【解析】
(1)先由题意得出,可得出与的等量关系,然后将点的坐标代入椭圆的方程,可求出与的值,从而得出椭圆的方程;(2)对直线的斜率是否存在进行分类讨论,当直线的斜率不存在时,可求出,然后进行检验;当直线的斜率存在时,可设直线的方程为,设点,先由直线与圆相切得出与之间的关系,再将直线的方程与椭圆的方程联立,由韦达定理,利用弦长公式并结合条件得出的值,从而求出直线的倾斜角.【详解】(1)由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抢占先机创设职高良好班风
- CT检查合同2024版新
- 《深化劳动合同》
- 卫生健康友好城市合作协议书
- 10kV线路施工后期维护方案
- 抗震设计混凝土植筋施工方案
- 一年级班主任工作总结:学生差异化教学
- 高校科研项目联盟管理规章
- 2024-2025学年贵州省遵义市高三上学期一模数学试题及答案
- 2024-2025学年河北省金科大联考高三9月质量检测历史试题及答案
- 商户收款码自查报告
- 餐饮业行业分析报告
- 神话故事燧人钻木取火
- 中华人民共和国民法典:研究与解读
- 食品加工与检验实训室建设方案
- 《心导管检查术》课件
- 《基因表达调控》课件
- 常州高级中学2022-2023学年高一上学期期中数学试题(原卷版)
- 厨房安全协议书
- TikTok全球化运营策略解析
- 《蓝色国土》课件
评论
0/150
提交评论