版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届皖江名校高三(高补班)下学期期中考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图像的一条对称轴为直线,且,则的最小值为()A. B.0 C. D.2.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.3.已知为虚数单位,若复数,,则A. B.C. D.4.已知集合,,若,则()A.或 B.或 C.或 D.或5.已知实数、满足约束条件,则的最大值为()A. B. C. D.6.已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是A. B.C. D.7.在的展开式中,的系数为()A.-120 B.120 C.-15 D.158.某几何体的三视图如右图所示,则该几何体的外接球表面积为()A. B.C. D.9.已知函数且,则实数的取值范围是()A. B. C. D.10.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A. B.C. D.11.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个 B.个 C.个 D.个12.如图,是圆的一条直径,为半圆弧的两个三等分点,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,若函数有大于零的极值点,则实数的取值范围是_____14.已知一组数据,1,0,,的方差为10,则________15.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.16.记等差数列和的前项和分别为和,若,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.18.(12分)设抛物线过点.(1)求抛物线C的方程;(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.19.(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(Ⅰ)求曲线的普通方程与直线的直角坐标方程;(Ⅱ)已知直线与曲线交于,两点,与轴交于点,求.20.(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.21.(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图.(1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.22.(10分)的内角,,的对边分别为,,已知,.(1)求;(2)若的面积,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,,所以,当时,的最小值,故选D.本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2.A【解析】
根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.3.B【解析】
由可得,所以,故选B.4.B【解析】
因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.5.C【解析】
作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.6.B【解析】
此题画出正方体模型即可快速判断m的取值.【详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.7.C【解析】
写出展开式的通项公式,令,即,则可求系数.【详解】的展开式的通项公式为,令,即时,系数为.故选C本题考查二项式展开的通项公式,属基础题.8.A【解析】
由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,,且平面,,的中点为外接球的球心,半径,外接球表面积.故选:A本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.9.B【解析】
构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.10.C【解析】
由题得,,又,联立解方程组即可得,,进而得出双曲线方程.【详解】由题得①又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2,所以②又③由①②③可得:,,所以双曲线的标准方程为.故选:C本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.11.C【解析】
计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球.故选:本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.12.B【解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;【详解】解:连接、,,是半圆弧的两个三等分点,,且,所以四边形为棱形,.故选:B本题考查平面向量的数量积及其运算律的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
先求导数,求解导数为零的根,结合根的分布求解.【详解】因为,所以,令得,因为函数有大于0的极值点,所以,即.本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.14.7或【解析】
依据方差公式列出方程,解出即可.【详解】,1,0,,的平均数为,所以解得或.本题主要考查方差公式的应用.15.【解析】
建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,,则,则,当时,,则单调递减,当时,,则单调递增,所以当时,最短,此时.故答案为:本题考查导数的实际应用,属于中档题.16.【解析】
结合等差数列的前项和公式,可得,求解即可.【详解】由题意,,,因为,所以.故答案为:.本题考查了等差数列的前项和公式及等差中项的应用,考查了学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)60;25(2)见解析,2.1(3)可以认为该校学生的体重是正常的.见解析【解析】
(1)根据频率分布直方图可求出平均值和样本方差;(2)由题意知服从二项分布,分别求出,,,,进而可求出分布列以及数学期望;(3)由第一问可知服从正态分布,继而可求出的值,从而可判断.【详解】解:(1)(2)由已知可得从全校学生中随机抽取1人,体重在的概率为0.7.随机拍取3人,相当于3次独立重复实验,随机交量服从二项分布,则,,,,所以的分布列为:01230.0270.1890.4410.343数学期望(3)由题意知服从正态分布,则,所以可以认为该校学生的体重是正常的.本题考查了由频率分布直方图求进行数据估计,考查了二项分布,考查了正态分布.注意,统计类问题,如果题目中没有特殊说明,则求出数据的精度和题目中数据的小数后位数相同.18.(1)(2)【解析】
(1)代入计算即可.(2)设直线AB的方程为,再联立直线与抛物线的方程,消去可得的一元二次方程,再根据韦达定理与求解,进而利用弦长公式求解即可.【详解】解:(1)因为抛物线过点,所以,所以,抛物线的方程为(2)由题意知直线AB的斜率存在,可设直线AB的方程为,,.因为,所以,联立,化简得,所以,,所以,,解得,所以.本题考查抛物线的方程以及联立直线与抛物线求弦长的简单应用.属于基础题.19.(1)(x-1)2+y2=4,直线l的直角坐标方程为x-y-2=0;(2)3.【解析】
(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【详解】(1)由曲线C的参数方程(α为参数)(α为参数),两式平方相加,得曲线C的普通方程为(x-1)2+y2=4;由直线l的极坐标方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直线l的直角坐标方程为x-y-2=0.(2)由题意可得P(2,0),则直线l的参数方程为(t为参数).设A,B两点对应的参数分别为t1,t2,则|PA|·|PB|=|t1|·|t2|,将(t为参数)代入(x-1)2+y2=4,得t2+t-3=0,则Δ>0,由韦达定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.20.(1)答案见解析(2)【解析】
(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.【详解】(1)函数的图象不能与x轴相切,理由若下:.假设函数的图象与x轴相切于则即显然,,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),,设(),恒大于零.在上单调递增.又,,,∴存在唯一,使,且时,时,①当时,恒成立,在单调递增,无极值,不合题意.②当时,可得当时,,当时,.所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.③当时,可得当时,,当时,.所以在内单调递增,在内单调递减,所以在处取得极大值,符合题意.此时由得即,综上可知,实数a的取值范围为.本题考查了函数的单调性,最值问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省泸县高三三诊模拟语文试卷(含答案)
- 中职班主任选手备赛七部曲汇报人王秀芳讲解
- 职业沟通与礼仪健康管理系施怡宁讲解
- 2025商铺租房的合同范本
- 简单聘用合同范本
- 2025抵押物的借款合同范本「标准版」
- 实习生用人合同协议书
- 2025三方工程合同
- 提高沟通技巧的职业培训方案
- 安防监控工程施工合同范本
- 江苏省盐城市鹿鸣路初级中学2024-2025学年八年级上学期期末考试语文试题(含答案)
- 新苏教版一年级数学下册第六单元《简单的数量关系(一)》教案(共2课时)
- 浙江省宁波市九校2024-2025学年高一上学期期末联考试题 数学 含答案
- GA/T 2146-2024法庭科学涉火案件物证检验移动实验室建设通用要求
- 北京市石景山区2024-2025学年九年级上学期期末考试数学试卷(含答案)
- 【课件】跨学科实践制作微型密度计++课件人教版物理八年级下册
- 杜邦公司十大安全理念
- 广联达2024算量软件操作步骤详解
- 2025年新高考语文模拟考试试卷(五) (含答案解析)
- 教育部《中小学校园食品安全和膳食经费管理工作指引》专题培训
- 中国共产主义青年团团章
评论
0/150
提交评论