整式的加减学习课件_第1页
整式的加减学习课件_第2页
整式的加减学习课件_第3页
整式的加减学习课件_第4页
整式的加减学习课件_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初一数学上学期期中复习第二章整式的加减知识结构:整式的加减整式的概念整式的计算单项式多项式系数次数项,项数,常数项,最高次项次数同类项与合并同类项去括号化简求值用字母来表示生活中的量定义:单项式中的_________。次数:1.当单项式的系数是1或-1时,“1”通常省略不写。单项式:系数:数字或字母的乘积由_________________组成的式子。单独的______或________也是单项式。单项式中的__________________.数字因数所有字母的指数和一个数一个字母注意的问题:2.当式子分母中出现字母时不是单项式。3.圆周率π是常数,不要看成字母。4.当单项式的系数是带分数时,通常写成假分数。5.单项式的系数应包括它前面的性质符号。6.单项式次数是指所有字母的次数的和,与数字的次数没有关系。7.单独的数字不含字母,规定它的次数是零次.定义:几个__________.常数项:多项式中_______________.多项式的次数:_________________________.

项:组成多项式中的_____________.有几项,就叫做_________.1.在确定多项式的项时,要连同它前面的符号,2.一个多项式的次数最高项的次数是几,就说这个多项式是几次多项式。3.在多项式中,每个单项式都是这个多项式的项,每一项都有系数,但对整个多项式来说,没有系数的概念,只有次数的概念。多项式单项式的和每一个单项式几项式不含字母的项多项式中次数最高的项的次数。注意的问题:同类项的定义:(两相同)合并同类项概念:_________________________.合并同类项法则:2._________________不变。2._________________相同。1.____相同,字母相同的字母的指数也1.______相加减;字母和字母的指数系数同类项注意:几个常数项也是______同类项。(两无关)2.与__________无关。1.与____无关系数字母的位置把多项式中的同类项合并成一项2.若与是同类项,则m+n=___.4.若,则m+n-p=______543.若与的和是一个单项式,则=___.-41.下列各式中,是同类项的是:___________①与②与③与④与⑤与⑥-125与③⑤⑥一、概念中的易错题二、运算中的易错题易错点总结:1,单项式的定义例1,下列各式子中,是单项式的有______________(填序号)①、②、④、⑦注意:1,单个的字母或数字也是单项式;2,用加减号把数字或字母连接在一起的式子不是单项式;3,只用乘号把数字或字母连接在一起的式子仍是单项式;4,当式子中出现分母时,要留意分母里有没有字母,有字母的就不是单项式,如果分母没有字母的仍有可能是单项式(注:“π”当作数字,而不是字母)2,单项式的系数与次数单项式系数次数例2指出下列单项式的系数和次数;注意:1,字母的系数“1”可以省略的,但不代表没有系数(次数也是同样道理);2,有分母的单项式,分母中的数字也是单项式系数的一部分;3,注意“π”不是字母,而是数字,属于系数的一部分;4,计算次数的时候并不是简单的见到指数就相加,注意单项式的次数指的是字母的指数和;3,多项式的项数与次数例3下列多项式次数为3的是()C例4请说出下列各多项式是几次几项式,并写出多项式的最高次项和常数项;注意(1)多项式的次数不是所有项的次数的和,而是它的最高次项次数;(2)多项式的每一项都包含它前面的符号;(3)再强调一次,“π”当作数字,而不是字母4,书写格式中的易错点例5下列各个式子中,书写格式正确的是()1、代数式中用到乘法时,若是数字与数字乘,要用“×”若是数字与字母乘,乘号通常写成”.”或省略不写,如3×y应写成3·y或3y,且数字与字母相乘时,字母与字母相乘,乘号通常写成“·”或省略不写。2、带分数与字母相乘,要写成假分数3、代数式中出现除法运算时,一般用分数写,即用分数线代替除号。4、系数一般写在字母的前面,且系数“1”往往会省略;F例6王强班上有男生m人,女生比男生的一半多5人,王强班上的总人数(用m表示)为______人。易错点:结果不进行化简,直接写点拨:结果中有它们是同类项,应合并以保证最后的结果最简.正确的写法是1,同类项的判定与合并同类项的法则:例1判断下列各式是否是同类项?点拨:对于(1)、(3),考察的是同类项的定义,所含字母相同,相同字母的指数也相同的称为同类项;所以(1)、(3)不是同类项;对于(2),虽然好像它们的次数不一样,但其实它们都是常数项,所以,它们都是同类项;对于(4),虽然它们的系数不同,字母的顺序也不同,但它依然满足同类项的定义,是同类项;答:(2)、(4)是同类项,(1)(3)不是同类项;例2下列合并同类项的结果错误的有_______________.①、②、③、④、⑤注意:1,合并同类项的法则是把同类项的系数相加,字母和字母的次数不变;2,合并同类项后也要注意书写格式;3,如果两个同类项的系数互为相反数,那么合并同类项后,结果得____;0例3合并同类项:小明的解法:(1)错在把所有项都当作同类项了;正确的解法:例3合并同类项:小明的解法:(2)错在把结合同类项时弄错了符号;正确的解法:总之,合并同类项现要找出式子中的同类项,并把它们写在一起,最后合并,注意同类项的系数是带符号的。2,去括号中的易错题:1,判断下列各式是否正确:√××()()()×()去括号时,1,注意括号外面的符号,括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不用变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。2,注意外面有系数的,各项都要乘以那个系数;练一练:1,化简下列各式:整式的加减一般步骤是(1)如果有括号就先去括号,(2)然后再合并同类项.4,多重括号化简的易错题注意:有多重括号的,一般先去小括号,再去中括号,最后再去大括号;3,化简求值中的易错题:(先去括号)(降幂排列)(合并同类项,化简完成)当x=-2时(代入)(代入时注意添上括号,乘号改回“×”)1.去掉下列各式中的括号。(1)8m-(3n+5)(2)n-4(3-2m)(3)2(a-2b)-3(2m-n)=8m-3n-5=n-12+8m=2a-4b-6m+3n2.化简:-(3x-2y+z)-[5x-x+2y-z-3x]解:原式=-(3x-2y+z)-[5x-(x-2y+z)-3x]=-(3x-2y+z)-[x+2y-z]=-(3x-2y+z)-[(5x-x-3x)+2y-z]=-3x+2y-z-x-2y+z=(-3x-x)+(2y-2y)+(-z+z)=-4x1,“A+2B”类型的易错题:例1若多项式计算多项式A-2B;注意:列式时要先加上括号,再去括号;例2一个多项式A加上得,求这个多项式A?注意:我们在移项的时候是整体移项,不要漏了添上括号;2,实际问题中的易错题:例1某种手机卡的市话费上次已按原收费标准降低了m元/分钟,现在再次下调20%,使收费标准为n元/分钟,那么原收费标准为().B点拨:为了弄清各数之间的关系,我们可以借助方程来求解.假设原收费标准为每分钟x元,可得:解得.应选B.例2若长方形的一边长为a+2b,另一边长比它的3倍少a-b,求这个长方形的周长?分析:如果直接列式的话,非常麻烦,我们可以先求出另一边长,再求周长,这样就比较容易求出答案;解:一边长为:a+2b;另一边长为:3(a+2b)-(a-b)=3a+6b-a+b=3a-a+6b+b=2a+7b;周长为:2(a+2b+2a+7b)=2(a+2a+2b+7b)=2(3a+9b)=6a+18b;答:长方形的周长为6a+18b从错误中吸取教训,从失败中取得进步,完善完整知识网络,我将会成为最棒的!3.求当x=时,多项式的值。解:原式===把x=带入中,得∴原式=5补充例题:a0b4.已知数a,b在数轴上的位置如图所示化简下列式子:∴原式=-a-2[-(a+b)]-3(b-a)解:由题意知:a<0,b>0且|a|>|b|=-a+2[a+b]-3b+3a=-a+2a+2b-3b+3a=(-a+2a+3a)+(2b-3b)=4a-b5.当x=1时,则当x=-1时,解:将x=1代入中得:

a+b-2=3

∴a+b=5;

当x=-1时代入=-a-b-2

=-(a+b)-2

=-7=-5-26.已知多项式A=,B=,C=求2A-5B+3C=?解:原式====6.如果关于x的多项式的值与x无关,则a的取值为_____.解:原式=由题意知,则:6a-6=0∴a=117.如果关于x,y的多项式的差不含有二次项,求的值。解:原式=由题意知,则:m-3=02+2n=0∴m=3,n=-1;∴==-11.指出下各式的关系(相等、相反数、不确定):a-b与b-a相反数(2)-a-b与-(b-a)不确定(3)–(a-b)与b-a相等(4)–(a-b)与b-a相反数2.补充两题:11整体代入法基础练习2ab2-8x3xa+b-c-da-b+c-d12x-6-5+x12a-12b4x+3所含______相同,并且__________的指数也相同的项叫做同类项。字母相同的字母把多项式中的_______合并成一项,叫做合并同类项。同类项负变正不变,要变全都变

整式加减的法则:有括号就先________,然后再__________。去括号合并同类项典型例题1、计算:(1)(2)解:原式===解:原式===典型例题2、先化简,再求值:其中

3、已知求(1)(2)典型例题4、已知长方形的宽为(2a-b)cm,长比宽多(a-b)cm,求这个长方形的周长。中学学科网长方形的周长=(长+宽)×2宽:长:?2a-b知识回顾整式的加减用字母表示数单项式:多项式:去括号:同类项:合并同类项:整式的加减:系数、次数项、次数、常数项定义、“两相同、两无关”定义、法则、步骤法则整式练习(一)练习(二)练习(三)步骤3、的项是(),次数是(),的项是(),次数是(),是()次()项式。2、的系数是(),次数是(),的系数是(),次数是();单项式有多项式有

整式1、在式子:

中,哪些是单项式,哪些是多项式?哪些是整式?y2、1-x-5xy2、-xy2、-x1-x-5xy2y2、1-x-5xy2、-x练习(一):y21-x-5xy221、-x、-5xy2返回通常我们把一个多项式的和项按照某个字母的指数人大到小(降幂)或者从小到大(升幂)的顺序排列,如也可以写成。3、若5x2y与是xmyn同类项,则m=()n=()若5x2y与xmyn同的和是单项式,m=()n=()1、下列各组是不是同类项:练习(二):-4x2+5x+55+5x-4x2(1)4abc与4ab(2)-5m2n3与2n3m2(3)-0.3x2y

与y

x22、合并下列同类项:中学学科网(1)3xy–4xy–xy=()(2)-a-a-2a=()(3)0.8ab3-a3b+0.2ab3=()不是是是–2xy–4aab3-a3b

2121返回3、多项式与的和是

,它们的差是

,多项式减去一个多项后是,则这个多项式是

。1、去括号:(1)+(x-3)=(2)-(x-3)=(3)-(x+5y-2)=(4)+(3x-5y+6z)=练习(三):x-3-x+3-x-5y+23x-5y+6z2、计算:(1)x-(-y-z+1)=

(2)m+(-n+q)=

;(3)a-(b+c-3)=

;(4)x+(5-3y)=

x-5xy2-3x+xy2-5a+4ab32aX+y+z-1m-n+qa-b-c+3x+5-3y-2x-4xy24x-6xy2-7a+4ab3例题(练习)(2)5a2

-[a2+(5a2

-2a)-2(a2-3a)]1、计算:(1)3(xy2-x2y)-2(xy+xy2)+3x2y;解:1、(1)原式=3xy2-3x2y-2xy-

2xy2

+3x2y=(3-2)xy2+(-3+3)+3x2y-2xy=xy2-2xy(2)原式=5a2

-(a2+5a2

-2a-2a2+6a)=5a2

(4a2+4a)=5a2

-4a2-4a=a2-4a2、化简求值:(-4x2+2x-8)-(x-2)其中x=因为x是正数,所以10x>8x中学学科网所以梯形的面积比长方形的面积大10x-8x=2x即梯形的面积比长方形的面积大2xcm2

3、长方形的长为2xcm,宽为4cm,梯形的上底为xcm,下底为上底的3倍,高为5cm,两者谁的面积大?大多少?解:长方形的面积为:8xcm2

梯形的面积为:(x+3x)=10xcm2

乙旅行团成人数为:门票费

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论