2024-2025学年安徽省合肥市一六八中学数学九年级第一学期开学检测试题【含答案】_第1页
2024-2025学年安徽省合肥市一六八中学数学九年级第一学期开学检测试题【含答案】_第2页
2024-2025学年安徽省合肥市一六八中学数学九年级第一学期开学检测试题【含答案】_第3页
2024-2025学年安徽省合肥市一六八中学数学九年级第一学期开学检测试题【含答案】_第4页
2024-2025学年安徽省合肥市一六八中学数学九年级第一学期开学检测试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年安徽省合肥市一六八中学数学九年级第一学期开学检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)矩形具有而平行四边形不具有的性质是()A.对角线互相平分 B.邻角互补 C.对角相等 D.对角线相等2、(4分)如图,菱形ABCD中,对角线AC、BD相交于O,已知BD=6,AC=8,则菱形ABCD的周长为()A.40 B.20 C.10 D.53、(4分)如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE,分别交AC、AD于点F、G,连接OG,则下列结论:①OG=AB;②图中与△EGD

全等的三角形共有5个;③以点A、B、D、E为项点的四边形是菱形;④

S四边形ODGF=

S△ABF.其中正确的结论是()A.①③ B.①③④ C.①②③ D.②②④4、(4分)八年级(1)班“环保小组的5位同学在一次活动中捡废弃塑料袋的个数分别为:16,16,4,6,1.这组数据的中位数、众数分别为()A.1,16 B.4,16 C.6,16 D.10,165、(4分)如图,在平行四边形ABCD中,对角线相交于点O,AC=AB,E是AB边的中点,G、F为BC上的点,连接OG和EF,若AB=13,BC=10,GF=5,则图中阴影部分的面积为()A.48 B.36 C.30 D.246、(4分)一个直角三角形的两边长分别为5和12,则第三边的长为()A.13 B.14 C.119 D.13或1197、(4分)某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是68、(4分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将正比例函数y=3x的图象向下平移11个单位长度后,所得函数图象的解析式为______.10、(4分)若,则的值是________.11、(4分)如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.12、(4分)一元二次方程有实数根,则的取值范围为____.13、(4分)直线y=3x-2与x轴的交点坐标为____________________三、解答题(本大题共5个小题,共48分)14、(12分)如图,矩形ABCD和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.(1)求证:;(2)求证:;15、(8分)某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?16、(8分)解方程:2x2﹣4x+1=0.(用配方法)17、(10分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.(1)请填写下表;(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(n>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.18、(10分)一次函数的图像经过,两点.(1)求的值;(2)判断点是否在该函数的图像上.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.20、(4分)不等式9﹣3x>0的非负整数解是_____.21、(4分)一种运算:规则是x※y=-,根据此规则化简(m+1)※(m-1)的结果为_____.22、(4分)甲、乙两车从地出发到地,甲车先行半小时后,乙车开始出发.甲车到达地后,立即掉头沿着原路以原速的倍返回(掉头的时间忽略不计),掉头1个小时后甲车发生故障便停下来,故障除排除后,甲车继续以加快后的速度向地行驶.两车之间的距离(千米)与甲车出发的时间(小时)之间的部分函数关系如图所示.在行驶过程中,甲车排除故障所需时间为______小时.23、(4分)如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数y=x的图象交于点C(m,4).(1)求m的值及一次函数y=kx+b的表达式;(2)观察函数图象,直接写出关于x的不等式x<kx+b的解集.25、(10分)已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.26、(12分)(1)先列表,再画出函数的图象.(2)若直线向下平移了1个单位长度,直接写出平移后的直线表达式.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据矩形相对于平行四边形的对角线特征:矩形的对角线相等,求解即可.【详解】解:由矩形对角线的特性可知:矩形的对角线相等.故选:D.本题考查的知识点是矩形的性质以及平行四边形的性质,掌握矩形以及平行四边形的边、角、对角线的性质是解此题的关键.2、B【解析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【详解】解:菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为1.故选:B.本题考查了菱形的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理计算AB的长是解题的关键.3、A【解析】

由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,③正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;④不正确;即可得出结果.【详解】解:四边形ABCD是菱形,在△ABG和△DEG中,∴△ABG≌△DEG(AAS),∴.AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB//CE,AB=DE,∴四边形ABDE是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,③正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,∴△ABG≌△DCO∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,则②不正确。∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;④不正确;故答案为:A.本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.4、A【解析】

根据中位数和众数的定义求解【详解】解:这组数据的中位数为:1,众数为:16.故选:A此题考查中位数和众数的定义,解题关键在于掌握其定义5、C【解析】

连接EO,设EF,GO交于点H,过点H作NM⊥BC与M,交EO于N,过点A作AP⊥BC,将阴影部分分割为△AEO,△EHO,△GHF,分别求三个三角形的面积再相加即可.【详解】解:如图连接EO,设EF,GO交于点H,过点H作NM⊥BC与M,交EO于N,∵四边形ABCD为平行四边形,O为对角线交点,∴O为AC中点,又∵E为AB中点,∴EO为三角形ABC的中位线,∴EO∥BC,∴MN⊥EO且MN=即EO=5,∵AC=AB,∴BP=PCBC=5,在Rt△APB中,,∴三角形AEO的以EO为底的高为AP=6,MN==6∴,,∴,故选:C本题考查了平行四边形的性质、三角形与四边形的面积关系;熟练掌握平行四边形的性质是解决问题的关键.6、D【解析】

本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】当12和5均为直角边时,第三边=122+当12为斜边,5为直角边,则第三边=122-5故第三边的长为13或119.故选D.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.7、D【解析】

根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,故选D.本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.8、D【解析】

一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【详解】∵一次函数,随的增大而增大,∴k-3>0,解得:k>3,故选D.本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握一次函数的性质是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据一次函数的上下平移规则:“上加下减”求解即可【详解】解:将正比例函数y=3x的图象向下平移个单位长度,所得的函数解析式为.故答案为:.本题考查的是一次函数的图象与几何变换,熟知一次函数图象变换的法则是解答此题的关键.10、1【解析】

利用完全平方公式变形,原式=,把代入计算即可.【详解】解:把代入得:原式=.故答案为:1.本题考查的是求代数式的值,把原式利用完全平方公式变形是解题的关键.11、AB=AD.【解析】

由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.【详解】添加AB=AD,∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=AD.此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.12、【解析】

根据根的判别式求解即可.【详解】∵一元二次方程有实数根∴解得故答案为:.本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.13、(,0)【解析】

交点既在x轴上,又在直线直线y=3x-2上,而在x轴上的点其纵坐标为0,因此令y=0,代入关系式求出x即可.【详解】当y=0时,即3x-2=0,解得:x=,∴直线y=3x-2与x轴的交点坐标为(,0),故答案为:(,0).本题考查直线与x轴的交点坐标,实际上就是令y=0,求x即可,数形结合更直观,更容易理解.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2)详见解析.【解析】

(1)根据题意可先证明四边形AHCE为平行四边形,再根据正方形的性质得到∴,,故可证明四边形AHGF是平行四边形,即可求解;(2)根据四边形AHGF是平行四边形,得,根据四边形ABCD是矩形,可得,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∵四边形ABCD是矩形,且E、H分别为AD、BC的中点,∴,,∴四边形AHCE为平行四边形,∴,,又∵四边形ECGF为正方形,∴,,∴,,∴四边形AHGF是平行四边形,∴;(2)证明:∵四边形AHGF是平行四边形,∴,∵四边形ABCD是矩形,∴,∴,又∵,∴;此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.15、(1),完成此工程共需9天;(2)6万元.【解析】

(1)设一次函数的解析式(合作部分)是y=kx+b,将(3,),(5,)代入,可求得函数解析式,令y=1,即可求得完成此项工程一共需要多少天.(2)根据甲的工作效率是,于是得到甲9天完成的工作量是9×=,即可得到结论.【详解】解:(1)设一次函数的解析式(合作部分)是y=kx+b(k≠0,k,b是常数).∵(3,),(5,)在图象上.代入得解得:∴一次函数的表达式为y=x-.当y=1时,x-=1,解得x=9,∴完成此房屋装修共需9天;(2)由图象知,甲的工作效率是,∴甲9天完成的工作量是:9×=,∴×8=6万元.本题主要考查了一次函数的应用,待定系数法求函数解析式,数学公式(工作效率=工作总量÷工作时间)的灵活运用,能根据图象提供的数据进行计算是解此题的关键,题型较好.16、x1=1+,x2=1﹣.【解析】试题分析:首先移项,再将二次项系数化为1,然后配方解出x即可.试题解析:2x2﹣4x+1=0,移项,得2x2﹣4x=-1,二次项系数化为1,得x2﹣2x=-,配方,得x2﹣2x+12=-+12,即(x-1)2=,解得,x-1=±,即x1=1+,x2=1-.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)解出未知数.17、(1)如表见解析;(2)W=-10x+11200,;(1)【解析】

(1)根据题意可以将表格中的空缺数据补充完整;(2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;(1)根据题意,利用分类讨论的数学思想可以解答本题.【详解】(1)∵C市运往B市x吨,∴C市运往A市(240-x)吨,D市运往B市(100-x)吨,D市运往A市260-(100-x)=(x-40)吨,故答案为240-x、x-40、100-x;(2)由题意可得,w=20(240-x)+25x+15(x-40)+10(100-x)=-10x+11200,又得40≤x≤240,∴w=10x+11200(40≤x≤240);(1)由题意可得,w=20(240-x)+(25-n)x+15(x-40)+10(100-x)=-(n+10)x+11200,∵n>0,∴-(n+10)<0,∴W随x的增大而减小当x取最大值240时,W最小值=-(n+10)×240+11200≥10080,即:-(n+10)×240+11200≥10080解得,n≤1,由上可得,m的取值范围是0<n≤1.本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.18、(1)k=-2,b=8;(2)在图象上.【解析】

(1)利用待定系数法即可得到k,b的值;(2)将点P的坐标代入函数解析式,如满足函数解析式则点在函数图象上,否则不在函数图象上.【详解】(1)把A(3,2),B(1,6)代入得:,解得:∴(2)当时,∴P(,10)在的图象上本题考查了待定系数法求一次函数的解析式、函数图象上点的坐标与函数关系式的关系.利用待定系数法求函数解析式的一般步骤:(1)先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);(2)将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.一、填空题(本大题共5个小题,每小题4分,共20分)19、x<4【解析】

观察图象,函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值即为不等式kx-3>2x+b的解集.【详解】由图象可得,当函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值为x<4,∴不等式kx-3>2x+b的解集是x<4.故答案为:x<4.本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想.20、0、1、1【解析】首先移项,然后化系数为1即可求出不等式的解集,最后取非负整数即可求解.解:9﹣3x>0,∴﹣3x>﹣9,∴x<3,∴x的非负整数解是0、1、1.故答案为0、1、1.21、【解析】

根据题目中的运算法则把(m+1)※(m-1)化为,再利用异分母分式的加减运算法则计算即可.【详解】∵x※y=-,∴(m+1)※(m-1)====故答案为:.本题考查了新定义运算,根据题目中的运算法则把(m+1)※(m-1)化为是解本题的关键.22、【解析】

画出符合题意的行程信息图,利用图中信息列方程组求出甲乙的速度,再构建方程解决问题即可.【详解】解:设去时甲的速度为km/h,乙的速度为km/h,则有,解得,∴甲返回时的速度为km/h,设甲修车的时间为小时,则有,解得.故答案为.本题考查函数图象问题,解题的关键是读懂图象信息,还原行程信息图,灵活运用所学知识解决问题.23、(2,5).【解析】

连接AB,BC,运用平行四边形性质,可知AD∥BC,所以点D的纵坐标是5,再跟BC间的距离即可推导出点D的纵坐标.【详解】解:由平行四边形的性质,可知D点的纵坐标一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论