半导体器件物理英文课件_第1页
半导体器件物理英文课件_第2页
半导体器件物理英文课件_第3页
半导体器件物理英文课件_第4页
半导体器件物理英文课件_第5页
已阅读5页,还剩370页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024/8/311§1-1Introduction2024/8/3122024/8/3132024/8/3142024/8/3152024/8/3162024/8/3172024/8/3182024/8/3192024/8/31102024/8/31112024/8/31122024/8/31132024/8/31142024/8/31152024/8/31162024/8/31172024/8/31182024/8/31192024/8/31202024/8/31212024/8/31222024/8/31232024/8/3124§1-2CrystalStructure2024/8/3125Solidstatematerialsincludes:insulator,semiconductorsandconductors.Semiconductormaterials2024/8/3126CompoundsSemiconductorsAbinarycompoundsemiconductorsisacombinationoftwo

elementsfromtheperiodictable.Ex:GaAs,GaP……etc.

Ternaryandquaternarycompounds.Ex:GaxIn1-xAsyP1-y

Element&CompoundSemiconductorsElementSemiconductors2024/8/3127SolidsAsatomsarebroughttogethertoformsolid,theinteractionofthevalanceelectronsholdthecrystaltogetheranddetermineitselectricalbehavior.CovalentBond:

sharingofapairofelectrons,SicrystalIonicBond:

transferofelectron,NaClMetallicBond:

Attractionbetweentheioncoreandtheseaofelectrons,AI(FCC)2024/8/3128Solids

Solidscanbeclassifiedascrystal,polycrystallineandamorphousCrystal–threedimensionallongrangeorderofatoms.Polycrystalline–mediumrangeorder,manysmallregionscalledgrains,eachhavingcrystallinestructure,joinedat“grainboundaries”whicharefullofdefects.Amorphous–nowelldefinedorder.2024/8/3129CrystalStructure2024/8/3130

Crystal

Lattice:Theperiodicarrangementofpointsinacrystal.

Basis:Theconstituentatomsattachedtoeachlattice

point.Everybasisisidenticalincomposition,

arrangement,andorientation.

Crystal=Lattice+BasisR=ma+nb+pca:latticeconstant2024/8/3131CrystalThelatticesisdefinedbythreefundamentaltranslationvectors2024/8/3132Unitcell:LatticecanbeconstructedbyrepeatedlyarrangingunitcellUnitCell2024/8/3133PrimitiveCell:AunitcelliscalledasprimitiveunitcellifthereisnocellofsmallervolumethatcanserveasabuildingblockforcrystalstructurePrimitiveCell2024/8/3134CrystalStructure2024/8/3135CrystalStructure2024/8/3136CrystalStructure2024/8/3137SystemBravaislatticeUnitcellSymmetryTriclinicSimpleNoneMonoclinicSimpleBase-centeredOne2-foldrotationaxisOrthorhombicSimpleBase-centerBody-centeredFace-centeredThreemutualityorthogonal2-foldTetragonalSimpleBody-centeredOne4-foldrotationaxisCubicSimpleBody-centeredFour-3-foldrotationaxis(alongcubediagonal)TrigonalSimpleOne3-foldrotationaxisHexagonalSimpleOne3-foldrotationaxis2024/8/3138MillerIndicesTheMillerindicesareobtainedusingthefollowingstepsFindtheinterceptsoftheplaneonthethreeCartesiancoordinateintermsofthelatticeconstant.Takethereciprocalsofthesenumbersandreducethemtothesmallestthreeintegershavingthesameradio.Enclosetheresultinparentheses(hkl)astheMillerindicesforasingleplane.2024/8/3139MillerIndices12=4x+3yMillerindices[43]2024/8/3140MillerIndices

2024/8/3141MillerIndices(hkl):Foraplanethatinterceptsthex-axisonthenegativesideoftheorigin.(100){hkl}:Forplanesofequivalentsymmetry.

(100)(010)(001)(100)(010)(001)<hkl>:Forafullsetofequivalentdirections.

[100][010][001][100][010][001][100][hkl]:Foracrystaldirection.2024/8/3142CrystalStructureTwointerveningFCCcellsoffsetby¼ofthecubicdiagonalfromdiamondstructureandzincblendestructure:2024/8/3143DirectLattice:BravaisCellReciprocalLattice:Wigner-SeitzCell2024/8/3144ImperfectionsinSolid

LatticeThermalVibrationPointDefects

-Vacancy

-interstitial

-Vacancy+interstitial=FrenkelDefectLineDefects-Dislocation:disruptingnotonlygeometricperiodicitybutalsoideaatomicbonds2024/8/3145ImperfectionsinSolid2024/8/3146ImpuritiesinSolidIntentionallyaddingimpuritiesintocrystalcanaltertheelectricalproperty

-Diffusion

-IonImplantation2024/8/3147FromSandtoWaferQuartziteCoalMGSCarbonmonoxidepurificationMGShrydrochlorideTCShydrogenTCShydrogenhrydrochlorideEGS2024/8/3148GrowthTechniquesReductionofquartzitetometallurgicalgradesilicon(MGS)withapurityof~98%.ConversionofMGStotrichlorosilane(SiHCl3).PurificationofSiHCl3bydistillation.Chemicalvapordeposition(CVD)ofSifromthepurifiedSiHCl3,asEGS.2024/8/3149SiCrystalIncrystalstructure,atomsharesitsvalenceelectronswiththeneighbors.Thesesharingofelectronsiscovalentbonding.2024/8/3150Electron&HoleAthighertemperature,thermalvibrationmaybreakthecovalentbonds;thefreeelectronscanparticipateincurrentconduction.Whenelectronsleavethecovalentbond,thevacancieswereconsideredasaparticlesimilartoanelectron.Thisfictitiousparticleiscalledahole.2024/8/3151§1-3EnergyBands2024/8/3152Wave-ParticleDualityWave-particledualityappliesprimarytosmallparticles,suchaselectron,neutron,photonWavesbehavesasiftheyareparticlesandsometimesparticlesbehavesasiftheyarewavesDeBroglierelationship2024/8/3153One-electronApproximation2024/8/3154

HydrogenAtomicModelBohr’sModel2024/8/3155HydrogenAtomicModelForanatom,eachelectronmusthaveaseparatedistinctenergystatedefinedby4quantumnumbers:Principequantumnumber,n=1,2,3Angularmomentumquantumnumber,I=0,1,2,…,n-1Magneticquantumnumber,m=0,±1,…,±IElectronspin,s=±1/2Onlyhydrogenatomcanbesolvedduetoelectron-electroninteraction2024/8/3156BandFormationTheinteractionresultsinthediscretequantizedenergylevelsplittingintotwodiscreteenergylevelsProbabilitydensityfunctionofaisolatedhydrogenatom2024/8/3157EnergyBandDegenerateWhenNisolatedatomsarebroughttogethertoformasolid,theorbitsoftheouterelectronsofdifferentatomsoverlapandinteractwitheachother.2024/8/3158EnergyBandSchematicshowingthesplittingofthreeenergystatesintoallowedbandsofenergies2024/8/3159BandFormationSiAtomInteractionporbital:sixallowedstatessorbital:twoallowedstates2024/8/3160EnergyBandSchematicdiagramoftheformationofasiliconcrystalfromNisolatedsiliconatoms2024/8/3161EnergyBand2024/8/3162EnergyMomentumDiagramForafreeelectron,

energyEcanbegivenbym0:effectivemass

P:momentum2024/8/3163BolchElectronWavefunctionInperiodicpotential,anelectronwillbehaveinthismanner,i.e.,Blochelectronisalsoperiodic2024/8/3164Energy(E)vs.Wavevector(k)FreeElectron:Incrystal,free-electronE-kisnolongervalid,discontinuityatk=nπ/aemerges.

→Creatingenergygap2024/8/3165BrillouinZone

ReducedBrillouinZone2024/8/3166Energy(E)vs.Wavevector(k)2024/8/3167EffectiveMassConceptElectronsinconductionbandandholesinvalencebandaresimilartofreeelectronssincetheycanmoverelativelyfreelyWecantreatelectronsandholesasclassicalparticlesmn:effectivemass

p:crystalmomentumofelectron2024/8/3168EffectiveMassConcept2024/8/3169EnergyBandDiagramofSiliconEg=1.12eVkT/q=0.0259eV@300k2024/8/3170EnergyBand:TemperatureEffect

BandGapvs.TemperatureSiGaAs2024/8/3171EnergyBandConductor,Semiconductor&insulator2024/8/3172BandStructureDirectSemiconductorThetopofthehighest

(occupied)valenceband

andthebottomofthe

lowest(unoccupied)

conductionbandareatthe

samevalueink-space.Examples:

GaAs,InP,GaN,ZnO.2024/8/3173BandStructureIndirectSemiconductor:Theextremeatthetop

ofthevalenceband

andatthebottomof

theconductionband

areatdifferentk-values.

Examples:Ge,Si.2024/8/3174Donor&AcceptorDeepimpurityLevel&ShallowImpurityLevel2024/8/3175§1-4CarrierConcentrationatThermalEquilibrium2024/8/3176DistributionFunctionsandDensitiesofStatesLetusconsiderthesituationwhenthenumberofstatesismuchgreaterthanthenumberofparticlesandtheprobabilityoffindingaparticleinagivenstatesismuchsmallerthanunity.Inthiscase,thePauliexclusionprincipleisnotimportant(sinceitisveryunlikelythattwoparticleswilloccupythesameenergylevel),andtheprobabilityoffindingaparticleinthestatewithenergyE,isgivenbywhereNiisthetotalnumberofparticlesinthisstate.Theaverageparticleenergycanbefoundas2024/8/3177Fermi-DiracDistributionFunctionForelectrons,thePauliexclusionprinciplestatesthatnomorethantwoelectrons(withoppositespins)canoccupyagivenenergylevel.Electronstendtooccupystateswithlowenergiesfirst.Hence,allthestateswithlowenergiesarefilledinexactlythesameway–oneelectronineachenergystate(countingthetwostateswiththesameenergyavailableforelectronswithoppositespinsastwoseparatestates).Atsuchlowenergies,theelectronprobabilityfunction,f,mustbeequaltounitysinceallthesestatesareoccupied.Howeverathighvaluesofenergy,whentheprobabilityofoccupyinganenergystateismuchsmallerthanunity,thePauliprinciplepresentsnolimitation,andthedistributionfunctionshouldreducetotheBoltzmanndistributionfunction.AmoredetailedanalysisshowsthattheelectrondistributionfunctionisgivenbytheFermi-Diracdistributionfunction2024/8/3178

BoltzmannDistributionFunctionInequilibrium,theprobabilitiesofhavingparticlesintwoenergystates,EkandEi,arerelatedviatheBoltzmannfactors:Thisequationmeansthattheprobabilityoffindingaparticlesinagivesenergystates,Ei,decreasesexponentiallywithEi.Foracontinuousenergyspectrum,theprobabilityoffindingaparticlewiththeenergybetweenEandE+dEisgivenbyThefunctionfiscalledtheBoltzmanndistributionfunction.2024/8/3179IntrinsicCarrierConcentrationIntrinsicSemiconductorisonethatcontainsrelativelysmallamountofimpuritiescomparedwiththethermallygeneratedelectronsandholesFermi-DiracDistributionFunction2024/8/3180Fermi-DiracDistributionprobabilitythataquantumstateattheenergyEwillbeoccupiedbyanelectron2024/8/3181f(T)2024/8/3182

FermiLevelatT=0oKTheFermiprobabilityfunctionversusforenergyforT=0oKDiscreteenergystatesandquantumstatesforaparticularsystematT=0oK2024/8/3183ThermalExcitation(T>0°K)DiscreteenergystatesandquantumstatesfortheparticularsystematT>0oK2024/8/3184

IntrinsicCarrierConcentration2024/8/3185

DensityofStatevs.Energy2024/8/3186

IntrinsicCarrierConcentrationIntrinsicsemiconductor(a)schematicbanddiagram(b)densityofstates(c)Fermidistributionfunction(d)carrierconcentration2024/8/3187

Maxwell-BoltzmanApproximationFermi-Diracdistribution:ForE-Ef>>kTMaxwell-Boltzmanapproximation2024/8/3188DensityofStatesandEffectiveDensityofStateswhereiscalledtheeffectivedensityofstatesfortheconductionband2024/8/3189DensityofStatesandEffectiveDensityofStatesIstheFermiintegralforconductionband,wherewhenηn>3,2024/8/3190whenηn<-3,ExampleExpressthevalueofenergycorrespondingtothepeakofdn/dEdistributionintermstemperature,T,assumingthatEc-EF>>kBT2024/8/3191

IntrinsicCarrierConcentration2024/8/3192IntrinsicCarrierConcentrationEffectivedensityofstatesinconductionbandEffectivedensityofstates

invalanceband2024/8/3193CarrierConcentrationinIntrinsicSilicon2024/8/3194FermiLevelinIntrinsicSiliconMassactionlawFermilevel:chargeneutralityn=p=niInintrinsicsiliconEcEvEiFermilevellocatesnearmiddle

bandgap2024/8/3195IntrinsicCarrierDensitiesIntrinsiccarrierdensitiesinSiandGaAsasafunctionofthereciprocaloftemperature2024/8/3196Donor&AcceptorExtrinsic:Asemiconductordopedwithoracceptorimpurities2024/8/3197Donor&AcceptorExcitedbythermalenergy

Mostofthedopantslocateatshallowenergylevel.Activationcanbemodeledbyhydrogenionizationwithreplacingdielectricconstant&effectivemass2024/8/3198CompensatedSemiconductor2024/8/3199NondegenerateSemiconductorElectronandholeconcentrationaremuchlowerthantheeffectivedensityofstatesInotherwords,EFisatleast3kTaboveEVor3kTbelowECForshallowdonorsoracceptors,thereusuallyisenergythermalenergytosupplytheenergyEDtoionizeallimpurities,i.e.,completeionizationTheconcentrationofelectron(hole)equalstothatofdonor(acceptor)ion2024/8/31100Donor&Acceptor

WhenCompleteIonization

ND:donorconcentration

NA:acceptorconcentration

2024/8/31101Inp-typesemiconductor

Donor&AcceptorWhendonorandacceptorexistinthesametimeInn-typesemiconductor2024/8/31102

CarrierConcentrationinn-DopedSilicon

2024/8/31103ChargeNeutrality2024/8/31104FermiLevelinExtrinsicSiliconThepositionofFermileveldeterminetheconcentrationofelectronsandholes2024/8/31105Donor&Acceptor2024/8/31106TemperatureEffect2024/8/31107Donor&Acceptor2024/8/31108DopantSolubilityinSilicon2024/8/31109DegenerateSemiconductorWhenthedopingconcentrationbecomesequalorlargerthattheeffectivedensityofstates,wecannolongerusetheapproximationofM-Bstatistics.Concentrationshouldbecalculatednumerically.EFwillbeaboveECorbelowEVBroadenshapeofimpurityenergydistributionresultinenergybandgapnarrowing2024/8/31110DegenerateSemiconductor2024/8/31111DegenerateSemiconductorLocalvariationofpotentialbyimpurity2024/8/31112§1-5CarrierTransport

Phenomena2024/8/31113TransportinDevicesThermalMotioninEquilibriumDrift:underinfluenceofelectricfieldDiffusion:concentrationgradientGenerationandRecombinationThermionicEmission

TunnelingImpactIonization2024/8/31114TopicsinTransportCurrentdensityequation:Drift&DiffusionContinuityequation:Generation-RecombinationOthertransportmechanisms:thermionicemission,tunneling,impactionizationIntroductionofresistivity,mobility……2024/8/31115ThermalMotionInthermalequilibrium,mobileelectronsintheconductionbandwillbeinrandomthermalmotion.Fromstatisticalfreedom.ThusKineticEnergyofanelectronwherek=Boltzmann’sconstantmn=Conductivityeffectivemassofelectron(nottoconfusedwiththedensityofstateeffectivemassVth=thermalvelocity~107cm/sec@300°K2024/8/31116ThermalMotionElectronsmovingrapidlyinalldirectionsThethermalmotionofanindividualelectroncanbevisualizedasasuccessiverandomscatteringwithlattervibration,impurity,andsoon.

Theaveragedistancebetweencollisionsisreferredtomeanfreepath(l).Typicalvalueof10-5cm.Thetimecalledmeanfreetime~1ps(τc=1/Vth)

2024/8/31117CarrierTransport:Drift(ElectricField)2024/8/31118CarrierTransport:MobilityInsteadystate,allmomentumgainedbetweencollisionswillbelosttolatticeinthecollision.Therefore,themomentumgainedbyaccelerationofelectricfieldduringfreemotioncanbeobtainedbyitmeansthatthereexistsarelationbetweendriftvelocityandappliedelectricfieldMobility:μn2024/8/31119ThermalVelocityTheaveragekineticenergyofthermalmotionperoneelectronis3kBT/2whereTisthetemperatureindegreesKelvinandkBistheBoltzmannconstant.Theelectronthermalvelocity,vthn,isfoundbyequatingtheelectronkineticenergyto3kBT/2:2024/8/31120DriftVelocityTheelectrondriftvelocity,vn,causedbyanappliedelectricfield,issuperimposedonthischaoticthermalmotion.Atroomtemperature,theelectronvelocityduetothethermalmotionisusuallygreaterthanoratleastcomparabletothedriftvelocity.Therefore,anexactdescriptionoftheelectronicmotioninasemiconductorhastorandomnessoftheelectronvelocity.2024/8/31121DriftVelocity(cont.)However,anapproximatedescriptionofthedriftvelocitycanbeobtainedfromNewton’ssecondlawofmotionforanelectronmovinginanelectricfieldF.Afreeelectroninspaceisacceleratedbyelectricfieldasfollows:2024/8/31122SecondLawofMotionEffectiveMassInasemiconductor,thefreeelectronmasshastobereplacedbytheeffectivemass,mn:2024/8/31123RelaxationTimeandMeanFreePathTheaveragedistancewhichanelectrontravelsbetweentwocollisionsiscalledthemeanfreepath.Inrelativelyweakelectricfieldswhentheelectrondriftvelocityismuchsmallerthanthenormalvelocity,themeanfreepathisgivenby:2024/8/31124MobilityAtlowfrequencies,ω<<1/τnp,mdv/dt<<qFiscalledtheelectronlowfieldmobilityorjustmobility.2024/8/31125ScatteringMechanismsLow-fieldmobilities:Mathiessens’srule:Inlowelectricfields

·ionizedimpurities

·acousticphononsInhighelectricfields

·opticalphonons

·intervalley

scatteringAthighconcentrations

·carrier-carrier

scattering2024/8/31126ExampleTheelectronmobilityinGaAsattemperaturesT=77KandT=300Kisequalto300,000cm2/Vsand9,000cm2/Vs,respectively.Theelectroneffectivemassisequalto0.067mewheremeisthefreeelectronmass.Findtheelectronmeanfreepathatthesetemperatures.2024/8/31127SolutionThemomentumrelaxationtimeisgivenbyHence,themeanfreepathSubstitutingtheparametervalues,wefind:

λn(77K)=2.67μm,λp(300K)=1570A2024/8/311281.Phononscattering-Latticeatomsvibratewithdiscreteallowablestates(quantummechanics).

2.Ionizadimpurityatomscattering(importantathighdopantconcentrations)

3.Neutalimpurityatomscattering(usuallynegligible)

4.Electron-electronandElectron-holescattering(importantathighcarrierconcentrations)

5.Crystaldefects(importantinpolycrystallinematerial)

6.Surfacescatteringeffects

(importantinMOSdevices)MobilityMobilityisdirectlyrelatedtothemeanfreetimebetweencollisions,whichisinturndeterminedbyscattering2024/8/31129ImpurityScattering2024/8/31130LatticeVibration2024/8/31131MobilityElectronmobilityinsiliconversustemperatureforvariousdonorconcentrations.Forlightlydopedsamples,thelatticescatteringdominates,andthemobilitydecreasesasthetemperatureincrease.Forheavilydopedsamples,theeffectofscatteringisthemostpronouncedatlowtemperature.Foragiventemperature,themobilitydecreaseswithincreasingimpurityconcentrationbecauseofenhancedimpurityscattering.2024/8/31132Mobility2024/8/31133MobilityAtlowfield

Vd=μζ

Mathiessen’srule2024/8/31134CarrierMobilitiesinSilicon2024/8/31135MaterialPropertiesofImportantSemiconductors2024/8/31136SurfaceScatteringInaMOSFET,carriersareattractedtowardsurface,whichmakesthemsufferingfrommoreseverescattering2024/8/31137Poisson’sEquationPotential:Electricfield:Poisson’sEq.:Guass’slaw2024/8/31138DiffusioncurrentLetusconsiderann-typesamplewithnon-uniformcarrierconcentrationindirectionx(whichmayberelatedtoanon-uniformdoping)andnoelectriccurrent(i=jdrift+jdiff=0)sothat(*)2024/8/31139SinceweobtainandandfromEq.(*)EinsteinRelationship2024/8/31140ExampleTheelectronandholemobilitiesinSiatroomtemperature(T=300K)are1,000cm2/Vsand300cm2/Vs,respectively.Calculatetheelectronandholediffusioncoefficients.2024/8/31141SolutionSinceforT=300K,kBT/q=0.02584eV,

Dn=μn

kBT/q=0.02584×1000=25.8cm2/sand

Dp=μp

kBT/q=0.02584×300=7.75cm2/s2024/8/31142ResistivityofSilicon2024/8/31143SheetResistivity2024/8/31144HallEffectForp-typesemiconductorLorentzforceHallFieldHallvoltageHallcoefficientForn-typesemiconductor2024/8/31145HallEffectWecandomeasurementoftheHallvoltageforaknowncurrentandmagneticfieldyields.Thus,thecarrierconcentrationandcarriertypecanbeobtaineddirectly.2024/8/31146ElectronDriftCurrentDensityjFOhm’sLaw2024/8/31147EnergyBalanceandEnergyRelaxationTimeElectrontemperature2024/8/31148DriftVelocityinSemiconductors2024/8/31149MobilityandSaturationVelocityinSilicon2024/8/31150ElectionandHoleVelocityinSi2024/8/31151Generation&RecombinationInthermalequilibrium:Ifexcesscarriersareintroducedtoasemiconductor.Wehaveanon-equilibriumsituation.Theprocessofintroducingexcesscarriersiscalledinjection.Whentheequilibriumconditionisdisturbed,processexisttorestorethesystemtoequilibrium.Whenweinjectiontheminoritycarrierstothesemiconductor.Theinjectionminoritycarrierswillrecombinewithmajoritycarriers.Thereleasedenergythatresultsfromtherecombinationprocesscanbeemittedasaphoton(radiativerecombination)ordissipatedasheattolattice(nonradiativerecombination).2024/8/31152DirectRecombinationIndirect-bandgapsemiconductor,whenthethermalvibrationcausessomebondsbetweenneighboringatomstobebroken,anelectron-holepairisgenerated.Thethermalenergyenablesavalanceelectrontomakeanupwardtransitiontotheconductionband,leavingaholeinvalenceband.Thisprocessiscalledcarriergeneration.2024/8/31153DirectRecombinationWhenanelectronmakesatransitiondownwardfromtheconductionbandtovalanceband,anelectron-holepairisannihilated.Thisprocessiscalledrecombination.2024/8/31154AugerRecombinationAuger

recombinationoccursbythetransferoftheenergyandmomentumreleasedbytherecombinationofanelectron-holepairtoathirdparticlethatcanbeeitheranelectronorahole2024/8/31155Underthermalequilibrium,thegenerationratemustequaltorecombinationrate.Whenexcesscarriesareintroducedtoadirect-bandgapsemiconductorRecombinationrateThermalequilibriumThesubject0indicatesanequilibriumquantity△meansexcessconcentrationThenetrateofchangeofholeconcentrationisβisthepropotionalityconstant2024/8/31156Insteadystate,UistherecombinationrateByaboveequationsForlowlevelinjection△p,andpno<<nn0τpislifetimeThephysicalmeaningoflifetimecanbeillustratedbythetransientresponseofadeviceafterthesuddenremovalofthelightsource.2024/8/31157

IndirectionRecombinationThedominaterecombination

processinindirection

semiconductor

(EX:Si)isindirecttransitionvialocalized

energystatesin

theforbidden

energygap.2024/8/31158IndirectionRecombinationTheproportionalityconstantcanbevisualizedasthevolumesweptoutperunittimebyanelectron.Ifthecentrelieswithinthisvolume,theelectronwillbecapturedbyit.2024/8/31159Atequilibrium,Ra=RbIndirectionRecombination2024/8/31160IndirectionRecombinationatsteadystateatequilibrium,GL=0Ra=RbandRc=Rd

understeadystatenonequilibrium

GL=Ra-Rb=Rc-Rd≡U2024/8/31161IndirectionRecombination2024/8/31162TheMinority-carrierLifetime

(Single-levelRecombination)TheAsymptoticLifetime

(Multiple-levelRecombination)2024/8/31163Experiments:Solid-stateDiffusionEX.(Goldinsilicon)High-energyRadiationEX.(Electronirradiation,Neutronirradiation,Deuteronirradiation)2024/8/31164Theminority-carrierlifetimemeasurementPC:PhotoconductionEffectStevenson-KeyesMethodPEM:Photo-electromagneticEffect2024/8/31165SurfaceRecombinationTheabruptdiscontinuityofthelatticestructureatthesurface,alargenumberiflocalizedenergystatesorgenerationrecombinationcentresmaybeintroducedatthesurfaceregion.Theseenergystatescalledsurfacestates,maygreatlyenhancetherecombinationrateatthesurfaceregion.

Low-injectionsurface

recombinationvelocity2024/8/31166§1-6PhononSpectraandOptical,Thermal,andHigh-FieldPropertiesofSemiconductors2024/8/31167PHONONSPECTRALA—longitudinalacousticmodesLO—longitudinalopticalmodesTA—transverseacousticmodesTO—transverseopticalmodes2024/8/31168OpticalPropertyT----TransmissioncoefficientR----Reflectioncoefficienta----absorptioncoefficienta~(hν-Eg)γ2024/8/31169ThermalPropertyThermoelectricPowerTodeterminetheconductiontypeofasemiconductorP-type----------------positiveN-type----------------negative2024/8/31170ThermalPropertyThermalconductivityκ~T2024/8/31171High-FieldPropertyNonlinearmobility(μ)Effectivetemperature(Te)Saturationofdriftvelocity2024/8/31172Vd,sat≈107cm/sVelocitySaturationVelocityincreaseslinearlywithincreasingelectricfield,butsaturatesathighfield2024/8/31173DiffusionVelocityoftheGaAsForn-typeGaAs,thedriftvelocityreachesamaximum,thendecreasesasthefieldfurtherincreases.ThisisduetotheenergybandstructureofGaAsallowsthetransferofconductionelectronfromahigh-mobilityenergyminimumtolow-mobility,higherenergysatellitevalleys.2024/8/31174DriftVelocityoftheGaAs2024/8/31175IntervalleyTransfer2024/8/31176DriftVelocityoftheGaAsThesteady-stateconductivityofthen-typeGaAs2024/8/31177Velocity-FieldCurvesforGaAs2024/8/31178AnalyticalApproximationVelocityin105m/s

Mobility,μ,inm2/V-s2024/8/31179ImpactIonizationWhentheelectricfieldishighenough,electronintheconductionbandcangainkineticenergybeforeitcollideswiththelattice.Onimpactwiththelattice,theelectronimpartsmostofitskineticenergytobreakabond,thatis,toionizeavalenceelectronfromthevalencebandtotheconductionbandandtherebygenerateanelectron-holepair.Thenthegenerationpairwillrepeatthisprocessagain.Thisprocessiscalledtheimpactionizationprocess.2024/8/31180Considerafast-movingelectronhasakineticenergyandamomentum.Aftercollision,therearethreecarries:theoriginalelectronplusanelectron-holepair.ImpactIonizationItisobviousthatE0mustbelargerthanthebandgapfortheionizationprocesstooccur.2024/8/31181IonizationRateThenumberofelectronholepairsgeneratedbyanelect

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论