




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省鸡西市鸡东县二中高三下学期入学测试(四)数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()A. B. C. D.2.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则()A., B.,C., D.,3.已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则()A. B.2 C. D.34.双曲线的渐近线方程为()A. B. C. D.5.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-286.设i为数单位,为z的共轭复数,若,则()A. B. C. D.7.已知i为虚数单位,则()A. B. C. D.8.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.9.执行如图所示的程序框图,输出的结果为()A. B.4 C. D.10.已知,,,若,则()A. B. C. D.11.已知数列满足,则()A. B. C. D.12.在条件下,目标函数的最大值为40,则的最小值是()A. B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则最小值为__________.14.如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.求证:15.设函数,,其中.若存在唯一的整数使得,则实数的取值范围是_____.16.在直角坐标系中,某等腰直角三角形的两个顶点坐标分别为,函数的图象经过该三角形的三个顶点,则的解析式为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,18.(12分)设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上,的周长为.(1)求椭圆C的标准方程;(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.19.(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.20.(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.21.(12分)若函数在处有极值,且,则称为函数的“F点”.(1)设函数().①当时,求函数的极值;②若函数存在“F点”,求k的值;(2)已知函数(a,b,,)存在两个不相等的“F点”,,且,求a的取值范围.22.(10分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之间没有影响.(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.故选:B此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.2.A【解析】
设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.【详解】如图所示,利用排除法,取与重合时的情况.不妨设,延长到,使得.,,,,则,由余弦定理得,,,又,,当平面平面时,,,排除B、D选项;因为,,此时,,当平面平面时,,,排除C选项.故选:A.本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题.3.B【解析】
过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,,,,由抛物线定义知:,,,.由抛物线性质得:,解得:,.故选:.本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.4.C【解析】
根据双曲线的标准方程,即可写出渐近线方程.【详解】双曲线,双曲线的渐近线方程为,故选:C本题主要考查了双曲线的简单几何性质,属于容易题.5.A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.6.A【解析】
由复数的除法求出,然后计算.【详解】,∴.故选:A.本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.7.A【解析】
根据复数乘除运算法则,即可求解.【详解】.故选:A.本题考查复数代数运算,属于基础题题.8.C【解析】
根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.9.A【解析】
模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.【详解】程序运行过程如下:,;,;,;,;,;,;,,退出循环,输出结果为,故选:A.该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.10.B【解析】
由平行求出参数,再由数量积的坐标运算计算.【详解】由,得,则,,,所以.故选:B.本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.11.C【解析】
利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.12.B【解析】
画出可行域和目标函数,根据平移得到最值点,再利用均值不等式得到答案.【详解】如图所示,画出可行域和目标函数,根据图像知:当时,有最大值为,即,故..当,即时等号成立.故选:.本题考查了线性规划中根据最值求参数,均值不等式,意在考查学生的综合应用能力.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14.证明见解析.【解析】试题分析:四点共圆,所以,又△∽△,所以,即,得证.试题解析:A.连接,因为为圆的直径,所以,又,则四点共圆,所以.又△∽△,所以,即,∴.15.【解析】
根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出临界条件满足的关系式求解即可.【详解】解:函数,且画出的图象如下:因为,且存在唯一的整数使得,故与在时无交点,,得;又,过定点又由图像可知,若存在唯一的整数使得时,所以,存在唯一的整数使得所以.根据图像可知,当时,恒成立.综上所述,存在唯一的整数使得,此时故答案为:本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点右边的整数点中为满足条件的唯一整数,再数形结合列出时的不等式求的范围.属于难题.16.【解析】
结合题意先画出直角坐标系,点出所有可能组成等腰直角三角形的点,采用排除法最终可确定为点,再由函数性质进一步求解参数即可【详解】等腰直角三角形的第三个顶点可能的位置如下图中的点,其中点与已有的两个顶点横坐标重复,舍去;若为点则点与点的中间位置的点的纵坐标必然大于或小于,不可能为,因此点也舍去,只有点满足题意.此时点为最大值点,所以,又,则,所以点,之间的图像单调,将,代入的表达式有由知,因此.故答案为:本题考查由三角函数图像求解解析式,数形结合思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)列联表见解析,有把握;(2)分布列见解析,.【解析】
(1)根据频率分布直方图补全列联表,求出,从而有的把握认为该校教职工是否为“冰雪迷”与“性别”有关.(2)在全校“冰雪迷”中按性别分层抽样抽取6名,则抽中男教工:人,抽中女教工:人,从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望.【详解】解:(1)由题意得下表:男女合计冰雪迷402060非冰雪迷202040合计6040100的观测值为所以有的把握认为该校教职工是“冰雪迷”与“性别”有关.(2)由题意知抽取的6名“冰雪迷”中有4名男职工,2名女职工,所以的可能取值为0,1,2.且,,,所以的分布列为012本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合、频率分布直方图的性质等基础知识,考查运算求解能力,属于中档题.18.(1)(2)见解析【解析】
(1)由,周长,解得,即可求得标准方程.(2)通过特殊情况的斜率不存在时,求得,再证明的斜率存在时,即可证得为定值.通过设直线的方程为与椭圆方程联立,借助韦达定理求得,利用直线与圆相切,即,求得的关系代入,化简即可证得即可证得结论.【详解】(1)由题意得,周长,且.联立解得,,所以椭圆C的标准方程为.(2)①当直线l的斜率不存在时,不妨设其方程为,则,所以,即.②当直线l的斜率存在时,设其方程为,并设,由,,,由直线l与圆E相切,得.所以.从而,即.综合上述,得为定值.本题考查了椭圆的标准方程,直线与椭圆的位置关系中定值问题,考查了学生计算求解能力,难度较难.19.(1),;(2),,.【解析】
(1)直接利用同角三角函数关系式的变换的应用求出结果.(2)首先把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【详解】(1)由题意得,,(2)由,解得,所以对称轴为,.由,解得,所以单调递增区间为.,本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.20.(1)见解析;(2)见解析【解析】
(1)求导得,分类讨论和,利用导数研究含参数的函数单调性;(2)根据(1)中求得的的单调性,得出在处取得最大值为,构造函数,利用导数,推出,即可证明不等式.【详解】解:(1)由于,得,当时,,此时在上递增;当时,由,解得,若,则,若,,此时在递增,在上递减.(2)由(1)知在处取得最大值为:,设,则,令,则,则在单调递减,∴,即,则在单调递减∴,∴,∴.本题考查利用导数研究函数的单调性和最值,涉及分类讨论和构造新函数,通过导数证明不等式,考查转化思想和计算能力.21.(1)①极小值为1,无极大值.②实数k的值为1.(2)【解析】
(1)①将代入可得,求导讨论函数单调性,即得极值;②设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.【详解】解:(1)①当时,(),则有(),令得,列表如下:x10极小值故函数在处取得极小值,极小值为1,无极大值.②设是函数的一个“F点”().(),是函数的零点.,由,得,,由,得,即.设,则,所以函数在上单调增,注意到,所以方程存在唯一实根1,所以,得,根据①知,时,是函数的极小值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纯化水检验培训
- 2025至2030年中国手动灌装机市场现状分析及前景预测报告
- 2025至2030年中国弹簧垫圈行业发展研究报告
- 2025至2030年中国建筑陶粒行业发展研究报告
- 2025至2030年中国应变式称重传感器市场分析及竞争策略研究报告
- 2025至2030年中国布帘机行业发展研究报告
- 高一联考数学试卷及答案
- 糖尿病手术病人护理配合
- 保险网时间管理
- 触觉反馈绘画笔刷企业制定与实施新质生产力战略研究报告
- 2023年新疆铁道职业技术学院单招面试模拟试题及答案解析
- 天星乡养羊项目绩效评价报告
- GB/T 39489-2020全尾砂膏体充填技术规范
- 《民法》全册精讲课件
- 厂内机动车辆课件
- 四川方言词典(教你说一口地道的四川话)
- 企业标准编写模板
- 《新媒体运营》考试参考题库(含答案)
- 学校食堂餐厨具操作规程
- DB32T 3916-2020 建筑地基基础检测规程
- 自动控制原理全套课件
评论
0/150
提交评论