




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3等腰三角形的性质定理第1课时等腰三角形性质定理1及等边三角形性质学习目标掌握等腰三角形的性质定理1;掌握等边三角形的性质,并会利用其性质进行简单推理.会利用等腰三角形的性质定理1进行简单的推理计算;复习回顾等腰三角形是
对称图形;对称轴是________________________.ABC轴顶角平分线所在的直线ABC合作探究探究1、任意画一个等腰三角形,用量角器测量一下它的内角度数,你发现了什么?67°67°46°两个底角度数相等探究2、把等腰三角形沿顶角平分线所在直线折叠,你有什么发现?BCA合作探究两个底角重合猜想:等腰三角形的两个底角相等.验证猜想已知:△ABC中,AB=AC.求证:∠B=∠C.证明:作顶角的平分线AD.在△BAD和△CAD中,AB=AC(已知),∠1=∠2(辅助线作法),AD=AD(公共边),∵ABCD12∴△BAD
≌△CAD(SAS).∴∠B=∠C(全等三角形的对应角相等).等腰三角形性质定理1等腰三角形的两个底角相等.也就是说,在同一个三角形中,等边对等角.新课讲解新课讲解几何语言ABC∵AB=AC,∴∠B=∠C(等边对等角).巩固练习1、等腰三角形一个底角为70°,它的顶角为______.2、等腰三角形一个角为70°,它的另外两个角为_______________________.3、等腰三角形一个角为110°,它的另外两个角为_______________________.40°70°,40°或55°,55°35°,35°巩固练习4、已知等腰△ABC中,∠B=80°,则∠A的度数为_________________.分析:(1)当∠B为顶角时,根据三角形内角和定理可得,∠A=∠C=50°.
(2)当∠B为底角时,①∠A为顶角,根据三角形内角和定理可得,∠A=20°.②∠A为底角,∠A=∠B=80°.50°、20°或80°注意求内角度数时的分类思想(顶角或底角).归纳总结等腰三角形内角关系①顶角+2×底角=180°;②顶角=180°-2×底角;③底角=(180°-顶角)÷2;④0°<顶角<180°;⑤0°<底角<90°.例题讲解例1
求等边三角形ABC三个内角的度数.
ABC等边三角形的每个内角都等于60°.归纳总结等边三角形的性质1、等边三角形的各个内角都等于60°.2、等边三角形是轴对称图形,它有三条对称轴.3、等边三角形是特殊的等腰三角形,它具有等腰三角形的一切性质.例题讲解例2
求证:等腰三角形两底角的平分线相等.已知:如图,在△ABC中,AB=AC,BD和CE是△ABC的两条角平分线.求证:BD=CE.ABCDE分析:要证明BD=CE,只需证明△BCE
≌△CBD.因为BC是△BCE
和△CBD
的公共边,所以只需证明∠ABC=∠ACB,
∠BCE=∠CBD.这可由已知AB=AC,BD和CE是△ABC的两条角平分线得到.
ABCDE课内练习1、如图,在△ABC中,AB=AC,∠ACD=100°,则∠A=________.ABCD100°?20°分析:由题意知,∠ACB=∠B=80°,由三角形内角和定理得,∠A=20°.2、已知:如图,在△ABC中,AB=AC,P为BC的中点,D,E分别是AB,AC上的点,且AD=AE.求证:PD=PE.ABCDEP证明:∵
AB=AC,
AD=AE,∴∠B=∠C,BD=CE.又∵
P为BC的中点,∴BP=CP.∴△BDP≌△CEP(SAS).∴
PD=PE.拓展提高如图,在三角形ABC中,AB=AC,D在AC上,且BD=BC=AD,求△ABC各内角的度数?分析:
根据等边对等角可得角度相等,再结合三角形的外角性质及内角和定理即可求出各角的度数.ACBD123证明:∵
BD=BC=AD,
AB=AC,∴∠1=∠A,∠3=∠C=∠ABC,又∵∠3=∠1+∠A,∴∠3=2∠1,∴∠ABC=2∠1,即∠1=∠2,∴在△BDC中,∠3+∠2+∠C=180°,即5∠2=180°,解得,∠2=36°.∴在△ABC中,∠A=∠2=36°,∠C=∠ABC=72°.ACBD123知识1、等腰三角形的两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版茶叶进出口贸易合同范本(国际市场)
- 2025版汽车维修后货物配送运输合同书模板
- 二零二五年度餐饮门面租赁合同范本下载
- 2025版工业园区安保外包与产业安全协议
- 2025版智能交通系统设备采购合同规范
- 二零二五年度厂房租赁合同书(含租赁面积)
- 二零二五年度KTV装修设计、施工、监理一体化合同
- 2025年财务会计远程服务劳动合同
- 二零二五年度仓储配送服务与仓储设备租赁合同
- 二零二五年办公家具与设备租赁采购合同
- 《成人糖尿病患者的高血糖危象:共识报告》-学习与应用
- 遵义社工面试真题及答案
- 金属材料的断裂和断裂韧性
- 镀锌板知识课件
- 2025-2030偏光成像相机行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 脑卒中急救培训课件
- 猪场退股协议书范本
- 2025年上海中考复习必背英语考纲词汇表默写(汉英互译)
- 2025海南保亭农水投资有限公司招聘22人笔试参考题库附带答案详解
- 静密封管理制度
- 《中国脑卒中防治报告(2023)》
评论
0/150
提交评论