版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022届河南省郑州一中市级名校中考数学适应性模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A. B. C. D.2.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)3.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟 B.20分钟 C.13分钟 D.7分钟4.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为()A.42° B.66° C.69° D.77°5.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°6.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×10107.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,358.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.59.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是(
)A.4 B.6 C.8 D.1010.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,则电线杆AB的高度为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.若使代数式有意义,则x的取值范围是_____.12.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).13.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.14.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.15.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.16.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.三、解答题(共8题,共72分)17.(8分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?18.(8分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若△PAC为直角三角形,直接写出此时点P的坐标.19.(8分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率Aa0.2B120.24C8bD200.4(1)参加本次讨论的学生共有人;表中a=,b=;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.20.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.21.(8分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?22.(10分)先化简,再在1,2,3中选取一个适当的数代入求值.23.(12分)如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数的图象于点N,若NM=NP,求n的值.24.问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y00(3)观察所画的图象,写出该函数的两条性质:.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC、OD、BD,∵点C、D是半圆O的三等分点,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等边三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等边三角形,则∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S阴影=S扇形OBD,S半圆O,飞镖落在阴影区域的概率,故选:D.【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.2、B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.3、C【解析】
先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:,将(7,100)代入,得k=700,∴,将y=35代入,解得;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.4、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.5、D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则2r·πr180考点:圆锥的计算.6、D【解析】
根据科学记数法的定义可得到答案.【详解】338亿=33800000000=,故选D.【点睛】把一个大于10或者小于1的数表示为的形式,其中1≤|a|<10,这种记数法叫做科学记数法.7、C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.8、C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C.9、B【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.10、B【解析】
延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即电线杆的高度为(2+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、x≠﹣2【解析】
直接利用分式有意义则其分母不为零,进而得出答案.【详解】∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠−2.故答案是:x≠−2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.12、甲.【解析】乙所得环数的平均数为:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.13、1【解析】
飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【详解】由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.14、【解析】
如图作DH⊥AE于H,连接CG.设DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四边形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC与△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案为4.15、1【解析】
本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.16、60°【解析】
先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案为:60°.【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2)×180°是解答本题的关键.三、解答题(共8题,共72分)17、甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为,设甲种商品按原销售单价销售a件,则,解得,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.18、(1)(4,6);y=1x1﹣8x+6(1);(3)点P的坐标为(3,5)或().【解析】
(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.【详解】解:(1)∵B(4,m)在直线y=x+1上,∴m=4+1=6,∴B(4,6),故答案为(4,6);∵A(,),B(4,6)在抛物线y=ax1+bx+6上,∴,解得,∴抛物线的解析式为y=1x1﹣8x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3①又抛物线的解析式为:y=1x1﹣8x+6②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+1=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴抛物线的对称轴为直线x=1.如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+1=.∴P1(,).∵点P1(3,5)、P1(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.19、(1)50、10、0.16;(2)144°;(3).【解析】
(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,(2)用360°乘以D观点的频率即可得;(3)画出树状图,然后根据概率公式列式计算即可得解【详解】解:(1)参加本次讨论的学生共有12÷0.24=50,则a=50×0.2=10,b=8÷50=0.16,故答案为50、10、0.16;(2)D所在扇形的圆心角的度数为360°×0.4=144°;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为.【点睛】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)详见解析;(2)80°.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解析】
(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【详解】证明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点睛】考点:全等三角形的判定与性质.21、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.【解析】
(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.【详解】(1)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴抛物线开口向下,当x<30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).∴销
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何泡蛤蚧酒?泡酒的正确方法与配方大全泡酒的比例是多少泡酒的功效与作用解析
- 医疗运营策略方案
- 【培训课件】员工敬业与责任心培训
- 医院手术证明书
- 2024正式的委托代理合同样书
- 2024建筑劳务的合同范本
- 2024至2030年中国地坎行业投资前景及策略咨询研究报告
- 2024至2030年中国铝合金挡风板行业投资前景及策略咨询研究报告
- 2024至2030年中国花洒产品数据监测研究报告
- 2024至2030年中国自行车把芯数据监测研究报告
- 职业生涯规划建筑工程
- 护士进修汇报麻醉护理与手术前后的护理
- 生产能力提升策略与实施计划书
- 癫痫性精神病护理查房课件
- 第三小学花样跳绳校本教材(一至六年级通用)
- 小学科学实验目录1-6年级新教科版
- 安全重大隐患管理制度
- 我国的宗教政策(共37张)
- 动漫制作专业职业生涯规划书
- 殡葬专业职业生涯规划与管理
- ERP运行检查明细表
评论
0/150
提交评论