版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
UNITEDNATIONSCONFERENCEONTRADEANDDEVELOPMENT
Workingpaper
#07
May2024
UNCTAD/WP/2024/2
Globalmegatrendsandthequestfor
povertyeradication
Abstract
PatrickN.Osakwe
Trade,PovertyandInequalitiesBranch,ALDC,UNCTAD
patrick.osakwe@
OlgaSolleder
Trade,PovertyandInequalitiesBranch,ALDC,UNCTAD
olga.solleder@
Globalmegatrendssuchasincomeinequality,climatechange,demographicshifts,technologicalprogress,andurbanisationareshapingthefutureofsocieties.Yet,theirquantitativeimpactsondevelopmentareneitherwellunderstoodnorestablished.Thispaperexaminestheindividualandcombinedeffectsoftheseglobalforcesonpoverty,usingbothcross-sectionandpanelestimationtechniquesonaglobaldatasetcoveringtheperiodfrom1995to2019.Regardingthedirecteffects,itfindsthatinequality,urbanization,andtechnologyarethemegatrendswitharobustimpactonpovertyinboththelongandmediumterms.Demographicshiftsandclimatechangehavesomeimpactonpoverty,buttheresultsdependonthesamplesandspecificationsconsidered.Furthermore,thepaperfindsthatinadditiontotheirdirecteffects,technology,urbanization,anddemographicshiftsaffectpovertythroughtheirinteractionswithincomeinequality.Amongthecontrols,percapitaincome,education,andprivatecreditaresignificantdriversinthemediumterm,whilepercapitaincomeistheonlycontrolvariablethatmattersinthelongrun.
Keywords
Poverty,megatrends,inequality,technology,climatechange,demography,urbanization.
Thefindings,interpretationsandconclusionsexpressedhereinarethoseoftheauthor(s)anddonotnecessarilyreflecttheviewsoftheUnitedNationsoritsofficialsorMemberStates.ThedesignationsemployedandthepresentationofmaterialonanymapinthisworkdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheUnitedNationsconcerningthelegalstatusofanycountry,territory,city,orareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersandboundaries.Thispaperhasnotbeenformallyedited.
Workingpaper
#07
May2024
Contents
Acknowledgements 2
1.Introduction 3
2.Transmissionmechanismslinkingglobalmegatrends
topoverty 6
3.Estimationapproach 10
4.Regressionresults 13
5.Conclusions 21
References 24
Annex 26
Acknowledgements
Theauthorsthanktwoanonymousreferees,aswellasUNCTADcolleagues,AnidaYupariAguadoandPaulAkiwumi,forcommentsonanearlierversionofthepaper.
2
Workingpaper
#07
May2024
1.
Introduction
Theeradicationofpovertyisthefundamentalpublicpolicychallengeofourtime.Itiscentraltofosteringsustainabledevelopmentatboththenationalandgloballevels.Itisalsoanimperativetoachievetheglobalmantrathatnooneshouldbeleftbehindinthedevelopmentprocess.Thisimportantfacthasbeenacknowledgedbytheinternationalcommunityasreflectedinthedecisionofworldleadersin2015todevotethefirstoftheseventeensustainabledevelopmentgoals(SDG)toendingpovertyinallitsformseverywhere.TherecognitionofthepivotalroleofpovertyeradicationinpromotingsustainedandsharedprosperityisalsoadrivingfactorinthedecisionoftheinternationalcommunitytodevotethefirstofthesixfocusareasoftheDohaProgrammeofActionforleastdevelopedcountriesto“Investinginpeople,eradicatingpovertyandbuildingcapacity.”
Overthepastfewdecades,significantprogresshasbeenmadeinreducingglobalpovertylargelyduetopositiveeconomicdevelopmentsinChinaandIndia.Usingthepovertyheadcountratiobasedonthe$2.15adaythreshold,theglobalpovertyratefellfrom37.8percentin1990to8.4percentin2019.1Despitethisprogressextremepovertyremainshighandtherearesignificantchallengestoaddressinseveralareas.Forexample,theprogressachievedtodatehasbeenunevenandpovertyisincreasinglyconcentratedinAfrica(Table1).2Inaddition,theeconomicandsocialenvironmentsinwhichgovernmentsmustdesignandimplementpoliciestocombatpovertyhavebecomemoreuncertainduetothefollowing“globalmegatrends”3:climatechange,demographicshifts,technologicalprogress,incomeinequalityandurbanisation.Theseglobalforcesposeseriousriskstothequestforsustainabledevelopment.Forexample,iftheseforcesarenotwellmanagedandifpresenttrendscontinue,itisunlikelythatgoal1oftheSDGoneradicatingpovertywillbeachievedbythe2030targetdate(UnitedNations2020).Notwithstandingtherisksposedbythesemegatrends,tothebestofourknowledge,thereisnoeconometricstudyexaminingtheindividualeffectsofmegatrendsonglobalpoverty(apartfromstudiesonincomeinequality).
1TheCovid-19pandemichasreversedsomeofthegainsachievedinthepastfewdecades.Asaresultofthepandemictheglobalpovertyraterosefrom8.4percentin2019to9.3percentin
2020andthendeclinedto8.4percentin2022(WorldBank2022).
2In1990,EastAsiaandPacificaccountedforabout52.9percentofglobalextremepoverty,SouthAsiafor28.2percentandSub-SaharanAfricafor13.6percent.In2019,thatisafterthreedecades,EastAsiaandPacificaccountedforonly3.6percentofglobalextremepoverty,SouthAsiafor24.1percentandSub-SaharanAfricafor60percent.Interestingly,unliketheotherregionswherethenumberofpoorpeopledeclinedbetween1990and2019,inSub-Saharan
Africathenumberofpoorpeopleincreasedfrom271.5millionto389million.
3Globalmegatrendsrefertomacroeconomic,social,andpoliticalforcesshapingthefutureofsocietieswithprofoundimpactsoneconomies.
3
Workingpaper
#07
May2024
Thereisalsonostudythatinvestigatesquantitativelyhowtheseforcesinteractandtheeffectoftheseinteractionsonpoverty.Againstthisbackdrop,ourpaperattemptstoaddressthecurrentlacunaintheliterature.
Theliteratureonthedriversofpovertyisvastandgrowing(Cerraetal.2021;Fosu2017;Epaulard2003;AliandThorbecke2000).Oneclassofthisliteratureusesaggregatemacroeconomicandsocialdatatoexaminethedeterminantsofpoverty.Forexample,LeGoffandSingh(2014)examinedtherelationshipbetweentradeopennessandpovertyusingpaneldataforAfricancountries.Theyfoundthattheeffectoftradeopennessonpovertydependsonthedepthofthefinancialsector,thelevelofeducationandthestrengthofinstitutions.Similarly,KpodarandSingh(2011)investigatedthelinkbetweenfinancialstructureandpovertyandfoundthatinanenvironmentwhereinstitutionsareweakbank-basedfinancialsystemscontributetopovertyreduction.Furthermore,asinstitutionsgetstrongermarket-basedfinancialsystemsbecomebeneficialforthepoor.Anotherclassoftheexistingliteraturefocusesontheroleofsectoralgrowthinunderstandingpovertyusingdisaggregateddata.BerardiandMarzo(2017)provideamethodologytostudytheelasticityofpovertywithrespecttosectoralgrowthatthecountrylevel.Theyarguethatboththecompositionofgrowthanditsoverallintensitymatterfortherelationshipbetweengrowthandpoverty.Inarelatedpaper,ErumbananddeVries(2021)examinetheroleofstructuralchangeingrowthandpovertyreduction.Theyfoundanassociationbetweenaggregatelabourproductivitygrowthandpovertyreductionindevelopingcountries.Theyalsofoundthatpovertyreductionwasassociatedwithstructuralchangeandmanufacturingproductivitygrowth.
Whilethepapersdiscussedabovehavemadeimportantcontributionstotheliteratureonthedriversofpoverty,theydonotinvestigatetheeffectsofglobalmegatrendsandtheirimplicationsforpovertyreduction.Inthisregard,ourpapercomplementsandaddsvaluetotheextantliteraturebyexaminingtheindividualimpactofeachoftheseglobalforcesonpoverty.Anothercontributionofthepaperisthatinadditiontoexaminingtheindividualeffectsofglobalmegatrendsonpoverty,wealsoinvestigatehowtheyinteractwithincomeinequality,andhowtheseinteractionsaffectpoverty.Thisisimportantbecausetheconfluenceoftheseglobalforcesmayhaveanimpactthatisquitedifferentfromtheirindividualeffects(Poloz2022).Thethirdcontributionofourpaperisthatitexaminesboththemediumandlong-rundriversofpovertywithcontrolsforotherpotentialcorrelatesofpovertyidentifiedintheliterature,namely:incomepercapita,education,infrastructure,institutions,trade,macroeconomicinstability,andfinancialdevelopment.
Therestofthepaperisorganisedasfollows.Section2discussesthetransmissionmechanismslinkingthefiveglobalmegatrendswithpovertyandexaminesthebilateralcorrelationbetweentheseforcesandameasureofpoverty:thepovertyheadcountratio.Insection3,wediscusstheempiricalstrategyadoptedinourpapertogetherwiththevariablesanddataused.Insection4,wepresentandanalysetheresultsforthebaselineregressions,conductrobustnesschecks,andexaminewhetherthereareinteractioneffectsamongmegatrends.Section5containssomeconcludingremarks.
4
5
Workingpaper
#07
May2024
Table1
PovertyratesandnumberofpooratUS$2.15perdaypovertyline
(Byregion)
Povertyheadcountratio(%)
Numberofpoorpeople
(millions)
1990201919902019
EastAsiaandPacific
65.8
1.1
1055.5
23.6
EuropeandCentralAsia
3.2
2.4
15.0
11.8
LatinAmericaandtheCaribbean
16.7
4.3
73.2
27.8
MiddleEastandNorthAfrica
6.1
-
14.0
-
SouthAsia
49.7
8.5
563
156.3
Sub-SaharanAfrica
53.3
35.1
271.5
389.0
Restoftheworld
0.5
0.6
4.1
6.7
World
37.8
8.4
1996.2
648.1
Source:CompiledbasedondatafromonlineannexofWorldBank(2022).
Workingpaper
#07
May2024
2.
Transmissionmechanismslinkingglobalmegatrendsto
poverty
Incomeinequality
Theeconomicliteraturesuggeststhatinequalityhasbothdirectandindirectconsequencesforpovertyreduction(Bourguignon2004;MarreroandServén2022).Thedirecteffectemanatesfromthefactthatforanygivengrowthrate,aworseningofincomedistributionwillincreasepoverty.Andtheindirecteffectarisesfromtheideathatinequalitycanincreasepovertybyinhibitinggrowththroughthefollowingmechanisms:creditmarketimperfections;socialconflicts;andredistributivedemocracy.Whentherearecreditmarketimperfectionsinaneconomypoorpeoplecannotborrowtoeitherexploitinvestmentopportunitiesoroffertheirchildrenagoodeducation.Inthiscontext,inequalityresultsinunderutilizationofacountry’spotentialandretardsgrowth(Bourguignon2004).Anotherchannelthroughwhichinequalityharmsgrowthisthatitfosterssocialandpoliticalinstabilitywhichisnotconducivetoinvestmentandgrowthinaneconomy(Ferreiraetal.2022).Inequalitycanalsoreducegrowthinademocraticsocietybecauseitincreasesthelikelihoodofadoptionofredistributionpolicieswhichwouldhavetobefinancedthroughhighertaxestherebyreducinggrowth(AlesinaandRodrik1994).Whilethemechanismsdiscussedaboveimplythatinequalityisbadforgrowth,itisworthnotingthatthereisalsoarelatedliteraturesuggestingthatinequalitycanfostergrowthbasedonthenotionthattherichhaveahighermarginalpropensitytosavethanthepoorandsoinequalityincreasessavingstherebyfacilitatinginvestmentandgrowth(Ferreiraetal.2022).
Climatechange
Amajorchannelthroughwhichclimatechangeaffectspovertyisbyreducingagriculturalproductionandgrowth(Hallegatteetal.2016).Byincreasingthefrequencyofextremeweathereventsandnaturalhazards(suchasheatwaves,drought,andflooding)climatechangehasanegativeeffectonagriculturalproductivityandproductionwithdireconsequencesforvulnerablepopulationswhodependonagriculturefortheirlivelihoods(UnitedNations2020).Climateinducedincreasesinprices,naturaldisastersandhealthproblemscanalsopushpeopleintopovertyaswellasreducetheabilityofthepoortoescapepovertytherebyincreasingthepovertyrate.Consequently,climatechangecanhaveasignificantnegativeimpactonpoverty,particularlyindevelopingeconomiesthatdonothavetheresourcesandcapacitytomitigateandadapttotheassociatedrisks.
6
Workingpaper
#07
May2024
Demographicshifts
Theworldisexperiencingasignificantslowdowninpopulationgrowthratesandshiftsinpopulationagestructures(WorldBank2016;UnitedNations2020).Inthedevelopedcountries,anincreaseinlifeexpectancycoupledwithlowfertilityrateshaveresultedinanincreaseintheproportionofolderpeople(aged65andabove)inthepopulation.Itiswell-knownthataspeoplegetoldertheirabilitytocarryoutnormaldailyactivitiesdeclines,andtheywillhavetorelyontheworkingagepopulationforcareandotherneeds.Consequently,achangingagestructurethatincreasestheproportionofolderpeopleinthepopulationwillincreasethedependencyratio,raisetheburdenontheworkingpopulation,andincreasepoverty.Incontrasttothedevelopedcountries,inthedevelopingcountriesthedemographictransitionisassociatedwithanincreaseintheworkingagepopulation,whichrepresentsademographicdividendandanopportunitytoraiselivingstandardstherebyreducingpoverty.
Technologicalprogress
Technologicalinnovationisanimportantsourceofproductivitygrowthandjobcreation,particularlyinnewsectorsandindustries.Butitalsocreateswinnersandlosersinaneconomyandsocouldhavebothpositiveandnegativeimpactsonpoverty.Forexample,iftechnologicalchangeislabour-augmentingtheoverallimpactislikelytobepoverty-reducingbutifitislabour-savingtheoverallimpactislikelytobepoverty-increasing.Inadditiontothefactor-biasoftechnologicalchange,thespeedoftechnologicalchangealsomattersindeterminingtheultimateimpactitcouldhaveonpovertyinaneconomy(KorinekandStiglitz2017).Whentechnologicalchangeoccursataslowpace,thepotentialdisruptioninthelabourmarketwillbelessbutwhenthepaceoftechnologicalchangeisfast,ittransformslabourmarketsrapidlyandinducesstructuralshiftsineconomiesthatcouldresultinsignificantjoblossesinoldsectorsandindustries.Inthiscontext,theimpactonpovertywilldependonhowexposedthepooraretoindustriesandsectorsthatarecontractingaswellasonhoweasyitisforthepoortotransitionintonewgrowthsectorsandindustriesresultingfromtechnologicalchanges.Itwillalsodependonwhethertechnologicalchangeisaccompaniedwithskillsdevelopmentandtrainingmeasuresaswellasredistributionpoliciesgearedtowardscushioningthepotentialnegativeimpactonthepoor.
Urbanization
Urbanizationinvolvesanincreaseintheurbanshareofthetotalpopulationofacountryandarisesprincipallyfromfoursources:anaturalincreaseinurbanpopulation,rural-urbanmigration,reclassificationofcities,andinternationalmigration(UnitedNations2020).Urbanizationcanhaveanimpactonpovertythroughdifferentmechanisms.Forexample,migrationofpeoplefromruraltourbanareascanincreaseboththeurbanwageintheformalsectorandtheruralwage(duetohigheragriculturalproductivity)therebyreducingpoverty.Itcanalsocontributetotheaccumulationofhumanandphysicalcapitaltherebyfosteringgrowthandcreatingthebasisforpovertyreduction(Haetal.2021).Historically,urbanizationintheadvancedeconomieswastriggeredanddrivenbyindustrializationwhichisanimportantengineofgrowth,jobcreationandpoverty
7
Workingpaper
#07
May2024
reduction(Gollinetal.2016).However,insomedevelopingcountries,particularlyinAfrica,urbanizationisassociatedwithrapidgrowthofinformalsector,slumformationsandhomelessness.Inthiscontext,althoughurbanizationcanplayapositiveroleinpovertyreductionandthedevelopmentprocess,itcanalsobeasourceofincreasesinpovertyifittakesplacewithoutindustrialdevelopmentandcreationofdecentjobs.
Havingdiscussedthetransmissionmechanismsthroughwhichtheglobalmegatrendscouldbelinkedtopoverty,itwouldbeinterestingtoexaminewhetherthereisanybilateralassociationbetweeneachofthemegatrendsandpovertyindicatorsinthedata,notingthatcorrelationsinthemselvesdonotimplycausality.Figure1presentsthebilateralcorrelationsbetweenthepovertyheadcountratioandselectedvariablesofinterestinthecross-sectionofcountries,withdataaveragedovertheperiod1995to2019.Thedataindicatesthatincomeinequality,theagedependencyratio(ameasureofdemographicshifts)andtheshareofpopulationaffectedbyclimate-relatednaturaldisasters(ameasureofclimatechange)arepositivelyassociatedwiththepovertyheadcountratio.Thecorrelationcoefficientsare0.64(inequality),0.74(demographicshifts),and0.09(climatechange).4Bycontrast,theshareoftheurbanpopulationintotalpopulation(aproxyforurbanization)andthepercentageofthepopulationusingtheinternet(aproxyfortechnologicalchange)arenegativelyassociatedwiththepovertyheadcountratio,withcorrelationcoefficientsequalto-0.61and-0.54respectively.Inaddition,thepovertyheadcountisstronglynegativelycorrelatedwithincomepercapita,withacorrelationcoefficientof-0.76.
4OnepossiblereasonforthislowcorrelationbetweenclimatechangeandpovertyinthedataisthatalthoughglobalextremepovertyisheavilyconcentratedinAfrica,mostofthoseaffectedbynaturaldisastersareinAsiaandthePacific(UNFPA2018).Furthermore,climatechangehasmultipledimensions(UnitedNations2020),anditisdifficulttocapturethedifferentdimensionsinoneindicator.
8
Workingpaper
#07
May2024
Figure1
Bivariatecorrelationsofpovertywithselectedvariables
Povertyheadcount
204060
0
PovertyheadcountPovertyheadcountPovertyheadcount
60
0204060020406002040
3040506070
Incomeinequality
Povertyheadcount
0204060
20406080100
Urbanization
Povertyheadcount
60
02040
020406080
Internetusers
406080100
Agedependency
01234
Climatechange(disaster−affectedpopulation)
7891011
Incomepercapita(ln)
Note:Eachdotisthemedianforacountryovertheperiod1995-2019.
9
Workingpaper
#07
May2024
3.
Estimationapproach
Theempiricalstrategyweadoptistwo-fold.First,weexaminetheempiricalrelationshipbetweenglobalmegatrendsandpovertyusingcross-sectiondata,whichcanbeinterpretedasrepresentingthelong-runeffectsofthesemegatrendsonpoverty.Second,wetakeadvantageofthepanelstructureofthedatabyestimatingpanelregressionswhichprovideinsightsintothemedium-runimpactsofthesemegatrendsonpoverty.Weestimatethepanelregressionsusingthefixedeffectsapproach,whichpermitsustocontrolfortimeinvariantcountrycharacteristicsandtimeeffectstherebymitigatingomittedvariablebias.Whilethefixedeffectsapproachaccountsforomittedvariablebias,itdoesnotcontrolforpotentialreversecausality.Tomitigatetheriskofreversecausalityinthefixed-effectsmodel,wealsoconductestimationsusinglagged,ratherthancontemporaneous,valuesofallregressors(seeBlotevogeletal.2022).5
Empiricalspecification
Webeginourempiricalinvestigationoftherelationshipbetweenglobalmegatrendsandpovertybyestimatingacross-sectionpovertyregressionasspecifiedinEquation(1).
Povertyi=λ+α’Mi+β’Xi+εi(1)
wheresubscriptidenotescountry,Povertyiisameasureofpovertyincountryi,Miisavectorcontainingcountry-levelindicatorsofthefivemegatrendsofinterestinthisstudy(inequality,urbanization,demographicshift,climatechange,andtechnologicalprogress),andαisavectorofrespectivecoefficientsonthemegatrends.Xiisavectorofcontrolvariables(income,education,tradepolicy,accesstocredit,macroeconomicinstability,andinstitutions),andβisavectorofcoefficientsonthecontrols.λisaconstantandεiisanerrorterm.
InadditiontoEquation(1),wealsoestimatethefollowingpanelregression6byfixedeffects:
Povertyit=α’Mit+β’Xit+μi+γt+εit(2)
5WealsotriedestimationbySystemGMM,buttheestimateswerehighlyunstableandimprecise,particularlywhenthevariablesareinnon-logform,reflectinginparttheweakinstrumentproblem.
6SeeforexampleDollarandKraay(2004).
10
Workingpaper
#07
May2024
wheresubscriptsiandtindicate,respectively,countryandtime(5-yearperiods).Povertyitisanindicatorofpovertyincountryiattimet.ThevectorMitcapturesfiveglobalmegatrends(inequality,urbanization,demographicshift,climatechange,andtechnologicalprogress)andαisavectoroftheirrespectivecoefficients.containscontrolvariables(income,education,tradepolicy,accesstocredit,macroeconomicinstability,andinstitutions)andβisthevectoroftheircoefficients.Timeinvariantcountrycharacteristics(orcountryfixedeffects)arecapturedbyμi,γtisatimeeffectandεitisanerrorterm.Wefirstuseacontemporaneousspecification,andthenaspecificationwithallregressorslaggedbyoneperiod(representing5years)tomitigatetheriskofreversecausality(Blotevogeletal.2022).
Insection2weprovidedanexplanationofthemechanismsthroughwhichthefiveglobalmegatrendscouldaffectpovertyanddiscussedtheexpectedsigns.Consequently,inthissectionwesimplydiscussthechoiceofthecontrolvariablesincludedintheregressionsandtheirexpectedsigns.Ourchoiceofthecontrolvariablesisguidedbytheliteratureanddataavailability.Incomepercapitaisoneofthevariablesweincludetocontrolforthelevelofeconomicdevelopmentwiththeexpectationthatahigherlevelofdevelopmentisassociatedwithlesspoverty.Incomeisalsoanimportantcontrolvariablebecausetheliteraturesuggeststhateconomicgrowthisamajordriverofchangesinpoverty,withhighergrowthexpectedtodecreasepovertyforagivenincomedistribution(Bourguignon2004).Theliteraturealsosuggeststhatanincreaseinhumancapitaloreducationdecreasestheincidenceofpovertythrough,forexample,enhancingjobprospectsandmakingiteasiertoearndecentwages(Rahman2013).Tradeisanothervariablethathasbeenwidelydiscussedasapotentialdriverofpovertyalthoughtheoreticallyitsimpactisambiguous(LeGoffandSingh2014):ontheonehandgreateropennessincreasesconsumerchoiceandprovidesaccesstolargermarketsforagriculturalgoodsproducedinsectorswherethepoorareheavilyconcentrated.Ontheotherhand,moreopennessincreasescompetitionandreducesthebargainingpowerofunskilledlabourrelativetoskilledlabourandcapital.Furthermore,tariffliberalizationmayresultinlossoftariffrevenuesimpactingpovertythroughthischannel.Macroeconomicinstabilityasreflectedininflationorinflationvolatilityisexpectedtoincreasepovertybyreducingtherealwageandincomeofthepoor(Epaulard2003).Financialdevelopmentisexpectedtoreducepovertyby,forexample,makingitpossibleforthepoortoborrowagainstfutureearningsandtoinvest.Itcanalsoreducepovertybymakingiteasierforhouseholdstomanagerisks(KpodarandSingh2011).Institutionsarealsoconsideredtoplayanimportantroleinpovertyalleviation,withpoorqualityinstitutionsexpectedtoincreasepovertythrough,forexample,reducinglabourandcapitalproductivityandcreatingpovertytraps(TebaldiandMohan2010).
11
Workingpaper
#07
May2024
Datasourcesandvariabledefinitions
Themainmeasureofpoverty,thedependentvariable,usedinourempiricalanalysesisthepovertyheadcountratio.However,wealsousedthepovertygapinthesectionwhereweconductedrobustnesschecks.ThetwopovertyindicatorsaresourcedfromtheWorldDevelopmentIndicators(WDI)databaseoftheWorldBank,andtheindicatorsarebasedonthelatestpovertythresholdof2.15$aday(2017PPP).7Asiscommonintheempiricalliterature,wemeasureincomeinequalitybytheGinicoefficientofpre-taxincomesourcedfromthecross-countrycomparablecompaniondatasetdevelopedbyUNU-WIDER(2022).Intherobustnesschecks,wealsousethePalmaratiofromUNU-WIDERasanalternativetotheGinicoefficient,whilerecognisingthatitonlycapturesthetailsratherthantheentireincomedistribution.OurincomemeasureisGDPpercapitaobtainedfromtheWDI.UrbanizationismeasuredbytheshareofurbanpopulationintotalpopulationsourcedfromtheWDIandbytheshareofurbansurfaceinthetotalsurfaceobtainedfromFAO(2022).Demographicshiftiscapturedbytheagedependencyratio,i.e.theratioofpeopleyoungerthan15andolderthan64totheworkingagepopulation(thoseaged15-64).ThedemographicshiftvariableisfromtheWDI.Climatechangeismeasuredbytheshareofpopulationaffectedbyclimate-relatednaturaldisasters(includingdroughts,floodsandextremetemperatureevents)andvalueofalleconomiclossesduetosuchdisasters,withbothmeasuresbeingobtainedfromtheEmergencyEventsDatabaseEM-DAT(CRED2023).Tech
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制图纸产品供应链分析
- 电源控制器市场发展前景分析及供需格局研究预测报告
- 蓄电瓶市场分析及投资价值研究报告
- 电子测量设备项目运营指导方案
- 穿孔乐谱纸卷项目运营指导方案
- 办公机器和设备租用行业营销策略方案
- 药用次硝酸铋市场发展前景分析及供需格局研究预测报告
- 仿裘皮产业链招商引资的调研报告
- 头发造型器具出租行业营销策略方案
- 实验室用滴定管产业链招商引资的调研报告
- 江苏省镇江市第二中学2023-2024学年高二上学期期中考试数学试卷(无答案)
- 2023-2024学年全国初一下生物人教版期末考试试卷(含答案解析)
- 2024年甘肃省陇南市武都区人民法院招聘18人历年高频难、易错点500题模拟试题附带答案详解
- 2024-2030年中国虚拟专用网络(VPN)行业市场行业发展分析及发展前景研究报告
- 地 理城镇与乡村(课件)2024-2025学年七年级地理上册同步课堂(人教版2024)
- 职域行销BBC模式开拓流程-企业客户营销技巧策略-人寿保险营销实战-培训课件
- 中华民族共同体概论课件专家版7第七讲 华夷一体与中华民族空前繁盛(隋唐五代时期)
- SB/T 10379-2012速冻调制食品
- CPrimerPlus第六版中文版习题答案
- API接口文档(简单版)Word版
- 银行业金融机构从业人员个人处罚信息授权查询使用承诺书
评论
0/150
提交评论