




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
UNITEDNATIONSCONFERENCEONTRADEANDDEVELOPMENT
Workingpaper
#07
May2024
UNCTAD/WP/2024/2
Globalmegatrendsandthequestfor
povertyeradication
Abstract
PatrickN.Osakwe
Trade,PovertyandInequalitiesBranch,ALDC,UNCTAD
patrick.osakwe@
OlgaSolleder
Trade,PovertyandInequalitiesBranch,ALDC,UNCTAD
olga.solleder@
Globalmegatrendssuchasincomeinequality,climatechange,demographicshifts,technologicalprogress,andurbanisationareshapingthefutureofsocieties.Yet,theirquantitativeimpactsondevelopmentareneitherwellunderstoodnorestablished.Thispaperexaminestheindividualandcombinedeffectsoftheseglobalforcesonpoverty,usingbothcross-sectionandpanelestimationtechniquesonaglobaldatasetcoveringtheperiodfrom1995to2019.Regardingthedirecteffects,itfindsthatinequality,urbanization,andtechnologyarethemegatrendswitharobustimpactonpovertyinboththelongandmediumterms.Demographicshiftsandclimatechangehavesomeimpactonpoverty,buttheresultsdependonthesamplesandspecificationsconsidered.Furthermore,thepaperfindsthatinadditiontotheirdirecteffects,technology,urbanization,anddemographicshiftsaffectpovertythroughtheirinteractionswithincomeinequality.Amongthecontrols,percapitaincome,education,andprivatecreditaresignificantdriversinthemediumterm,whilepercapitaincomeistheonlycontrolvariablethatmattersinthelongrun.
Keywords
Poverty,megatrends,inequality,technology,climatechange,demography,urbanization.
Thefindings,interpretationsandconclusionsexpressedhereinarethoseoftheauthor(s)anddonotnecessarilyreflecttheviewsoftheUnitedNationsoritsofficialsorMemberStates.ThedesignationsemployedandthepresentationofmaterialonanymapinthisworkdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheUnitedNationsconcerningthelegalstatusofanycountry,territory,city,orareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersandboundaries.Thispaperhasnotbeenformallyedited.
Workingpaper
#07
May2024
Contents
Acknowledgements 2
1.Introduction 3
2.Transmissionmechanismslinkingglobalmegatrends
topoverty 6
3.Estimationapproach 10
4.Regressionresults 13
5.Conclusions 21
References 24
Annex 26
Acknowledgements
Theauthorsthanktwoanonymousreferees,aswellasUNCTADcolleagues,AnidaYupariAguadoandPaulAkiwumi,forcommentsonanearlierversionofthepaper.
2
Workingpaper
#07
May2024
1.
Introduction
Theeradicationofpovertyisthefundamentalpublicpolicychallengeofourtime.Itiscentraltofosteringsustainabledevelopmentatboththenationalandgloballevels.Itisalsoanimperativetoachievetheglobalmantrathatnooneshouldbeleftbehindinthedevelopmentprocess.Thisimportantfacthasbeenacknowledgedbytheinternationalcommunityasreflectedinthedecisionofworldleadersin2015todevotethefirstoftheseventeensustainabledevelopmentgoals(SDG)toendingpovertyinallitsformseverywhere.TherecognitionofthepivotalroleofpovertyeradicationinpromotingsustainedandsharedprosperityisalsoadrivingfactorinthedecisionoftheinternationalcommunitytodevotethefirstofthesixfocusareasoftheDohaProgrammeofActionforleastdevelopedcountriesto“Investinginpeople,eradicatingpovertyandbuildingcapacity.”
Overthepastfewdecades,significantprogresshasbeenmadeinreducingglobalpovertylargelyduetopositiveeconomicdevelopmentsinChinaandIndia.Usingthepovertyheadcountratiobasedonthe$2.15adaythreshold,theglobalpovertyratefellfrom37.8percentin1990to8.4percentin2019.1Despitethisprogressextremepovertyremainshighandtherearesignificantchallengestoaddressinseveralareas.Forexample,theprogressachievedtodatehasbeenunevenandpovertyisincreasinglyconcentratedinAfrica(Table1).2Inaddition,theeconomicandsocialenvironmentsinwhichgovernmentsmustdesignandimplementpoliciestocombatpovertyhavebecomemoreuncertainduetothefollowing“globalmegatrends”3:climatechange,demographicshifts,technologicalprogress,incomeinequalityandurbanisation.Theseglobalforcesposeseriousriskstothequestforsustainabledevelopment.Forexample,iftheseforcesarenotwellmanagedandifpresenttrendscontinue,itisunlikelythatgoal1oftheSDGoneradicatingpovertywillbeachievedbythe2030targetdate(UnitedNations2020).Notwithstandingtherisksposedbythesemegatrends,tothebestofourknowledge,thereisnoeconometricstudyexaminingtheindividualeffectsofmegatrendsonglobalpoverty(apartfromstudiesonincomeinequality).
1TheCovid-19pandemichasreversedsomeofthegainsachievedinthepastfewdecades.Asaresultofthepandemictheglobalpovertyraterosefrom8.4percentin2019to9.3percentin
2020andthendeclinedto8.4percentin2022(WorldBank2022).
2In1990,EastAsiaandPacificaccountedforabout52.9percentofglobalextremepoverty,SouthAsiafor28.2percentandSub-SaharanAfricafor13.6percent.In2019,thatisafterthreedecades,EastAsiaandPacificaccountedforonly3.6percentofglobalextremepoverty,SouthAsiafor24.1percentandSub-SaharanAfricafor60percent.Interestingly,unliketheotherregionswherethenumberofpoorpeopledeclinedbetween1990and2019,inSub-Saharan
Africathenumberofpoorpeopleincreasedfrom271.5millionto389million.
3Globalmegatrendsrefertomacroeconomic,social,andpoliticalforcesshapingthefutureofsocietieswithprofoundimpactsoneconomies.
3
Workingpaper
#07
May2024
Thereisalsonostudythatinvestigatesquantitativelyhowtheseforcesinteractandtheeffectoftheseinteractionsonpoverty.Againstthisbackdrop,ourpaperattemptstoaddressthecurrentlacunaintheliterature.
Theliteratureonthedriversofpovertyisvastandgrowing(Cerraetal.2021;Fosu2017;Epaulard2003;AliandThorbecke2000).Oneclassofthisliteratureusesaggregatemacroeconomicandsocialdatatoexaminethedeterminantsofpoverty.Forexample,LeGoffandSingh(2014)examinedtherelationshipbetweentradeopennessandpovertyusingpaneldataforAfricancountries.Theyfoundthattheeffectoftradeopennessonpovertydependsonthedepthofthefinancialsector,thelevelofeducationandthestrengthofinstitutions.Similarly,KpodarandSingh(2011)investigatedthelinkbetweenfinancialstructureandpovertyandfoundthatinanenvironmentwhereinstitutionsareweakbank-basedfinancialsystemscontributetopovertyreduction.Furthermore,asinstitutionsgetstrongermarket-basedfinancialsystemsbecomebeneficialforthepoor.Anotherclassoftheexistingliteraturefocusesontheroleofsectoralgrowthinunderstandingpovertyusingdisaggregateddata.BerardiandMarzo(2017)provideamethodologytostudytheelasticityofpovertywithrespecttosectoralgrowthatthecountrylevel.Theyarguethatboththecompositionofgrowthanditsoverallintensitymatterfortherelationshipbetweengrowthandpoverty.Inarelatedpaper,ErumbananddeVries(2021)examinetheroleofstructuralchangeingrowthandpovertyreduction.Theyfoundanassociationbetweenaggregatelabourproductivitygrowthandpovertyreductionindevelopingcountries.Theyalsofoundthatpovertyreductionwasassociatedwithstructuralchangeandmanufacturingproductivitygrowth.
Whilethepapersdiscussedabovehavemadeimportantcontributionstotheliteratureonthedriversofpoverty,theydonotinvestigatetheeffectsofglobalmegatrendsandtheirimplicationsforpovertyreduction.Inthisregard,ourpapercomplementsandaddsvaluetotheextantliteraturebyexaminingtheindividualimpactofeachoftheseglobalforcesonpoverty.Anothercontributionofthepaperisthatinadditiontoexaminingtheindividualeffectsofglobalmegatrendsonpoverty,wealsoinvestigatehowtheyinteractwithincomeinequality,andhowtheseinteractionsaffectpoverty.Thisisimportantbecausetheconfluenceoftheseglobalforcesmayhaveanimpactthatisquitedifferentfromtheirindividualeffects(Poloz2022).Thethirdcontributionofourpaperisthatitexaminesboththemediumandlong-rundriversofpovertywithcontrolsforotherpotentialcorrelatesofpovertyidentifiedintheliterature,namely:incomepercapita,education,infrastructure,institutions,trade,macroeconomicinstability,andfinancialdevelopment.
Therestofthepaperisorganisedasfollows.Section2discussesthetransmissionmechanismslinkingthefiveglobalmegatrendswithpovertyandexaminesthebilateralcorrelationbetweentheseforcesandameasureofpoverty:thepovertyheadcountratio.Insection3,wediscusstheempiricalstrategyadoptedinourpapertogetherwiththevariablesanddataused.Insection4,wepresentandanalysetheresultsforthebaselineregressions,conductrobustnesschecks,andexaminewhetherthereareinteractioneffectsamongmegatrends.Section5containssomeconcludingremarks.
4
5
Workingpaper
#07
May2024
Table1
PovertyratesandnumberofpooratUS$2.15perdaypovertyline
(Byregion)
Povertyheadcountratio(%)
Numberofpoorpeople
(millions)
1990201919902019
EastAsiaandPacific
65.8
1.1
1055.5
23.6
EuropeandCentralAsia
3.2
2.4
15.0
11.8
LatinAmericaandtheCaribbean
16.7
4.3
73.2
27.8
MiddleEastandNorthAfrica
6.1
-
14.0
-
SouthAsia
49.7
8.5
563
156.3
Sub-SaharanAfrica
53.3
35.1
271.5
389.0
Restoftheworld
0.5
0.6
4.1
6.7
World
37.8
8.4
1996.2
648.1
Source:CompiledbasedondatafromonlineannexofWorldBank(2022).
Workingpaper
#07
May2024
2.
Transmissionmechanismslinkingglobalmegatrendsto
poverty
Incomeinequality
Theeconomicliteraturesuggeststhatinequalityhasbothdirectandindirectconsequencesforpovertyreduction(Bourguignon2004;MarreroandServén2022).Thedirecteffectemanatesfromthefactthatforanygivengrowthrate,aworseningofincomedistributionwillincreasepoverty.Andtheindirecteffectarisesfromtheideathatinequalitycanincreasepovertybyinhibitinggrowththroughthefollowingmechanisms:creditmarketimperfections;socialconflicts;andredistributivedemocracy.Whentherearecreditmarketimperfectionsinaneconomypoorpeoplecannotborrowtoeitherexploitinvestmentopportunitiesoroffertheirchildrenagoodeducation.Inthiscontext,inequalityresultsinunderutilizationofacountry’spotentialandretardsgrowth(Bourguignon2004).Anotherchannelthroughwhichinequalityharmsgrowthisthatitfosterssocialandpoliticalinstabilitywhichisnotconducivetoinvestmentandgrowthinaneconomy(Ferreiraetal.2022).Inequalitycanalsoreducegrowthinademocraticsocietybecauseitincreasesthelikelihoodofadoptionofredistributionpolicieswhichwouldhavetobefinancedthroughhighertaxestherebyreducinggrowth(AlesinaandRodrik1994).Whilethemechanismsdiscussedaboveimplythatinequalityisbadforgrowth,itisworthnotingthatthereisalsoarelatedliteraturesuggestingthatinequalitycanfostergrowthbasedonthenotionthattherichhaveahighermarginalpropensitytosavethanthepoorandsoinequalityincreasessavingstherebyfacilitatinginvestmentandgrowth(Ferreiraetal.2022).
Climatechange
Amajorchannelthroughwhichclimatechangeaffectspovertyisbyreducingagriculturalproductionandgrowth(Hallegatteetal.2016).Byincreasingthefrequencyofextremeweathereventsandnaturalhazards(suchasheatwaves,drought,andflooding)climatechangehasanegativeeffectonagriculturalproductivityandproductionwithdireconsequencesforvulnerablepopulationswhodependonagriculturefortheirlivelihoods(UnitedNations2020).Climateinducedincreasesinprices,naturaldisastersandhealthproblemscanalsopushpeopleintopovertyaswellasreducetheabilityofthepoortoescapepovertytherebyincreasingthepovertyrate.Consequently,climatechangecanhaveasignificantnegativeimpactonpoverty,particularlyindevelopingeconomiesthatdonothavetheresourcesandcapacitytomitigateandadapttotheassociatedrisks.
6
Workingpaper
#07
May2024
Demographicshifts
Theworldisexperiencingasignificantslowdowninpopulationgrowthratesandshiftsinpopulationagestructures(WorldBank2016;UnitedNations2020).Inthedevelopedcountries,anincreaseinlifeexpectancycoupledwithlowfertilityrateshaveresultedinanincreaseintheproportionofolderpeople(aged65andabove)inthepopulation.Itiswell-knownthataspeoplegetoldertheirabilitytocarryoutnormaldailyactivitiesdeclines,andtheywillhavetorelyontheworkingagepopulationforcareandotherneeds.Consequently,achangingagestructurethatincreasestheproportionofolderpeopleinthepopulationwillincreasethedependencyratio,raisetheburdenontheworkingpopulation,andincreasepoverty.Incontrasttothedevelopedcountries,inthedevelopingcountriesthedemographictransitionisassociatedwithanincreaseintheworkingagepopulation,whichrepresentsademographicdividendandanopportunitytoraiselivingstandardstherebyreducingpoverty.
Technologicalprogress
Technologicalinnovationisanimportantsourceofproductivitygrowthandjobcreation,particularlyinnewsectorsandindustries.Butitalsocreateswinnersandlosersinaneconomyandsocouldhavebothpositiveandnegativeimpactsonpoverty.Forexample,iftechnologicalchangeislabour-augmentingtheoverallimpactislikelytobepoverty-reducingbutifitislabour-savingtheoverallimpactislikelytobepoverty-increasing.Inadditiontothefactor-biasoftechnologicalchange,thespeedoftechnologicalchangealsomattersindeterminingtheultimateimpactitcouldhaveonpovertyinaneconomy(KorinekandStiglitz2017).Whentechnologicalchangeoccursataslowpace,thepotentialdisruptioninthelabourmarketwillbelessbutwhenthepaceoftechnologicalchangeisfast,ittransformslabourmarketsrapidlyandinducesstructuralshiftsineconomiesthatcouldresultinsignificantjoblossesinoldsectorsandindustries.Inthiscontext,theimpactonpovertywilldependonhowexposedthepooraretoindustriesandsectorsthatarecontractingaswellasonhoweasyitisforthepoortotransitionintonewgrowthsectorsandindustriesresultingfromtechnologicalchanges.Itwillalsodependonwhethertechnologicalchangeisaccompaniedwithskillsdevelopmentandtrainingmeasuresaswellasredistributionpoliciesgearedtowardscushioningthepotentialnegativeimpactonthepoor.
Urbanization
Urbanizationinvolvesanincreaseintheurbanshareofthetotalpopulationofacountryandarisesprincipallyfromfoursources:anaturalincreaseinurbanpopulation,rural-urbanmigration,reclassificationofcities,andinternationalmigration(UnitedNations2020).Urbanizationcanhaveanimpactonpovertythroughdifferentmechanisms.Forexample,migrationofpeoplefromruraltourbanareascanincreaseboththeurbanwageintheformalsectorandtheruralwage(duetohigheragriculturalproductivity)therebyreducingpoverty.Itcanalsocontributetotheaccumulationofhumanandphysicalcapitaltherebyfosteringgrowthandcreatingthebasisforpovertyreduction(Haetal.2021).Historically,urbanizationintheadvancedeconomieswastriggeredanddrivenbyindustrializationwhichisanimportantengineofgrowth,jobcreationandpoverty
7
Workingpaper
#07
May2024
reduction(Gollinetal.2016).However,insomedevelopingcountries,particularlyinAfrica,urbanizationisassociatedwithrapidgrowthofinformalsector,slumformationsandhomelessness.Inthiscontext,althoughurbanizationcanplayapositiveroleinpovertyreductionandthedevelopmentprocess,itcanalsobeasourceofincreasesinpovertyifittakesplacewithoutindustrialdevelopmentandcreationofdecentjobs.
Havingdiscussedthetransmissionmechanismsthroughwhichtheglobalmegatrendscouldbelinkedtopoverty,itwouldbeinterestingtoexaminewhetherthereisanybilateralassociationbetweeneachofthemegatrendsandpovertyindicatorsinthedata,notingthatcorrelationsinthemselvesdonotimplycausality.Figure1presentsthebilateralcorrelationsbetweenthepovertyheadcountratioandselectedvariablesofinterestinthecross-sectionofcountries,withdataaveragedovertheperiod1995to2019.Thedataindicatesthatincomeinequality,theagedependencyratio(ameasureofdemographicshifts)andtheshareofpopulationaffectedbyclimate-relatednaturaldisasters(ameasureofclimatechange)arepositivelyassociatedwiththepovertyheadcountratio.Thecorrelationcoefficientsare0.64(inequality),0.74(demographicshifts),and0.09(climatechange).4Bycontrast,theshareoftheurbanpopulationintotalpopulation(aproxyforurbanization)andthepercentageofthepopulationusingtheinternet(aproxyfortechnologicalchange)arenegativelyassociatedwiththepovertyheadcountratio,withcorrelationcoefficientsequalto-0.61and-0.54respectively.Inaddition,thepovertyheadcountisstronglynegativelycorrelatedwithincomepercapita,withacorrelationcoefficientof-0.76.
4OnepossiblereasonforthislowcorrelationbetweenclimatechangeandpovertyinthedataisthatalthoughglobalextremepovertyisheavilyconcentratedinAfrica,mostofthoseaffectedbynaturaldisastersareinAsiaandthePacific(UNFPA2018).Furthermore,climatechangehasmultipledimensions(UnitedNations2020),anditisdifficulttocapturethedifferentdimensionsinoneindicator.
8
Workingpaper
#07
May2024
Figure1
Bivariatecorrelationsofpovertywithselectedvariables
Povertyheadcount
204060
0
PovertyheadcountPovertyheadcountPovertyheadcount
60
0204060020406002040
3040506070
Incomeinequality
Povertyheadcount
0204060
20406080100
Urbanization
Povertyheadcount
60
02040
020406080
Internetusers
406080100
Agedependency
01234
Climatechange(disaster−affectedpopulation)
7891011
Incomepercapita(ln)
Note:Eachdotisthemedianforacountryovertheperiod1995-2019.
9
Workingpaper
#07
May2024
3.
Estimationapproach
Theempiricalstrategyweadoptistwo-fold.First,weexaminetheempiricalrelationshipbetweenglobalmegatrendsandpovertyusingcross-sectiondata,whichcanbeinterpretedasrepresentingthelong-runeffectsofthesemegatrendsonpoverty.Second,wetakeadvantageofthepanelstructureofthedatabyestimatingpanelregressionswhichprovideinsightsintothemedium-runimpactsofthesemegatrendsonpoverty.Weestimatethepanelregressionsusingthefixedeffectsapproach,whichpermitsustocontrolfortimeinvariantcountrycharacteristicsandtimeeffectstherebymitigatingomittedvariablebias.Whilethefixedeffectsapproachaccountsforomittedvariablebias,itdoesnotcontrolforpotentialreversecausality.Tomitigatetheriskofreversecausalityinthefixed-effectsmodel,wealsoconductestimationsusinglagged,ratherthancontemporaneous,valuesofallregressors(seeBlotevogeletal.2022).5
Empiricalspecification
Webeginourempiricalinvestigationoftherelationshipbetweenglobalmegatrendsandpovertybyestimatingacross-sectionpovertyregressionasspecifiedinEquation(1).
Povertyi=λ+α’Mi+β’Xi+εi(1)
wheresubscriptidenotescountry,Povertyiisameasureofpovertyincountryi,Miisavectorcontainingcountry-levelindicatorsofthefivemegatrendsofinterestinthisstudy(inequality,urbanization,demographicshift,climatechange,andtechnologicalprogress),andαisavectorofrespectivecoefficientsonthemegatrends.Xiisavectorofcontrolvariables(income,education,tradepolicy,accesstocredit,macroeconomicinstability,andinstitutions),andβisavectorofcoefficientsonthecontrols.λisaconstantandεiisanerrorterm.
InadditiontoEquation(1),wealsoestimatethefollowingpanelregression6byfixedeffects:
Povertyit=α’Mit+β’Xit+μi+γt+εit(2)
5WealsotriedestimationbySystemGMM,buttheestimateswerehighlyunstableandimprecise,particularlywhenthevariablesareinnon-logform,reflectinginparttheweakinstrumentproblem.
6SeeforexampleDollarandKraay(2004).
10
Workingpaper
#07
May2024
wheresubscriptsiandtindicate,respectively,countryandtime(5-yearperiods).Povertyitisanindicatorofpovertyincountryiattimet.ThevectorMitcapturesfiveglobalmegatrends(inequality,urbanization,demographicshift,climatechange,andtechnologicalprogress)andαisavectoroftheirrespectivecoefficients.containscontrolvariables(income,education,tradepolicy,accesstocredit,macroeconomicinstability,andinstitutions)andβisthevectoroftheircoefficients.Timeinvariantcountrycharacteristics(orcountryfixedeffects)arecapturedbyμi,γtisatimeeffectandεitisanerrorterm.Wefirstuseacontemporaneousspecification,andthenaspecificationwithallregressorslaggedbyoneperiod(representing5years)tomitigatetheriskofreversecausality(Blotevogeletal.2022).
Insection2weprovidedanexplanationofthemechanismsthroughwhichthefiveglobalmegatrendscouldaffectpovertyanddiscussedtheexpectedsigns.Consequently,inthissectionwesimplydiscussthechoiceofthecontrolvariablesincludedintheregressionsandtheirexpectedsigns.Ourchoiceofthecontrolvariablesisguidedbytheliteratureanddataavailability.Incomepercapitaisoneofthevariablesweincludetocontrolforthelevelofeconomicdevelopmentwiththeexpectationthatahigherlevelofdevelopmentisassociatedwithlesspoverty.Incomeisalsoanimportantcontrolvariablebecausetheliteraturesuggeststhateconomicgrowthisamajordriverofchangesinpoverty,withhighergrowthexpectedtodecreasepovertyforagivenincomedistribution(Bourguignon2004).Theliteraturealsosuggeststhatanincreaseinhumancapitaloreducationdecreasestheincidenceofpovertythrough,forexample,enhancingjobprospectsandmakingiteasiertoearndecentwages(Rahman2013).Tradeisanothervariablethathasbeenwidelydiscussedasapotentialdriverofpovertyalthoughtheoreticallyitsimpactisambiguous(LeGoffandSingh2014):ontheonehandgreateropennessincreasesconsumerchoiceandprovidesaccesstolargermarketsforagriculturalgoodsproducedinsectorswherethepoorareheavilyconcentrated.Ontheotherhand,moreopennessincreasescompetitionandreducesthebargainingpowerofunskilledlabourrelativetoskilledlabourandcapital.Furthermore,tariffliberalizationmayresultinlossoftariffrevenuesimpactingpovertythroughthischannel.Macroeconomicinstabilityasreflectedininflationorinflationvolatilityisexpectedtoincreasepovertybyreducingtherealwageandincomeofthepoor(Epaulard2003).Financialdevelopmentisexpectedtoreducepovertyby,forexample,makingitpossibleforthepoortoborrowagainstfutureearningsandtoinvest.Itcanalsoreducepovertybymakingiteasierforhouseholdstomanagerisks(KpodarandSingh2011).Institutionsarealsoconsideredtoplayanimportantroleinpovertyalleviation,withpoorqualityinstitutionsexpectedtoincreasepovertythrough,forexample,reducinglabourandcapitalproductivityandcreatingpovertytraps(TebaldiandMohan2010).
11
Workingpaper
#07
May2024
Datasourcesandvariabledefinitions
Themainmeasureofpoverty,thedependentvariable,usedinourempiricalanalysesisthepovertyheadcountratio.However,wealsousedthepovertygapinthesectionwhereweconductedrobustnesschecks.ThetwopovertyindicatorsaresourcedfromtheWorldDevelopmentIndicators(WDI)databaseoftheWorldBank,andtheindicatorsarebasedonthelatestpovertythresholdof2.15$aday(2017PPP).7Asiscommonintheempiricalliterature,wemeasureincomeinequalitybytheGinicoefficientofpre-taxincomesourcedfromthecross-countrycomparablecompaniondatasetdevelopedbyUNU-WIDER(2022).Intherobustnesschecks,wealsousethePalmaratiofromUNU-WIDERasanalternativetotheGinicoefficient,whilerecognisingthatitonlycapturesthetailsratherthantheentireincomedistribution.OurincomemeasureisGDPpercapitaobtainedfromtheWDI.UrbanizationismeasuredbytheshareofurbanpopulationintotalpopulationsourcedfromtheWDIandbytheshareofurbansurfaceinthetotalsurfaceobtainedfromFAO(2022).Demographicshiftiscapturedbytheagedependencyratio,i.e.theratioofpeopleyoungerthan15andolderthan64totheworkingagepopulation(thoseaged15-64).ThedemographicshiftvariableisfromtheWDI.Climatechangeismeasuredbytheshareofpopulationaffectedbyclimate-relatednaturaldisasters(includingdroughts,floodsandextremetemperatureevents)andvalueofalleconomiclossesduetosuchdisasters,withbothmeasuresbeingobtainedfromtheEmergencyEventsDatabaseEM-DAT(CRED2023).Tech
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社团编导部面试题及答案
- 税务师核心试题及答案 2024详解
- 2025年西安思源学院单招职业倾向性考试题库1套
- 2025年贵州交通职业技术学院单招职业倾向性测试题库及参考答案1套
- 2025年西南交通大学希望学院单招职业适应性考试题库必考题
- 2025年西昌民族幼儿师范高等专科学校单招职业倾向性测试题库一套
- 农艺师考试的循序渐进复习方式试题及答案
- 农村占地修路合同标准文本
- 2025年西安交通工程学院单招职业倾向性测试题库汇编
- 农业市场营销战略分析试题及答案
- 地铁施工监测监理细则
- 呼吸机的使用操作流程
- “双碳”目标下数智化供应链运作管理策略研究
- 江苏省苏州市2024-2025学年度第二学期七年级历史期中模拟试卷(1)含答案
- 2024年山东省国控设计集团有限公司招聘笔试真题
- 空调定期清洗消毒制度消毒
- 2024-2025学年下学期高二政治选必修2第三单元B卷
- 重庆市拔尖强基联盟2024-2025学年高三下学期3月联合考试历史试题(含答案)
- 果园种植管理合作合同范本
- 居室空间设计 课件 项目四 起居室空间设计
- 【历史】隋唐时期的科技与文化教学设计 2024-2025学年统编版七年级历史下册
评论
0/150
提交评论