全球大趋势和消除贫困的追求报告_第1页
全球大趋势和消除贫困的追求报告_第2页
全球大趋势和消除贫困的追求报告_第3页
全球大趋势和消除贫困的追求报告_第4页
全球大趋势和消除贫困的追求报告_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

UNITEDNATIONSCONFERENCEONTRADEANDDEVELOPMENT

Workingpaper

#07

May2024

UNCTAD/WP/2024/2

Globalmegatrendsandthequestfor

povertyeradication

Abstract

PatrickN.Osakwe

Trade,PovertyandInequalitiesBranch,ALDC,UNCTAD

patrick.osakwe@

OlgaSolleder

Trade,PovertyandInequalitiesBranch,ALDC,UNCTAD

olga.solleder@

Globalmegatrendssuchasincomeinequality,climatechange,demographicshifts,technologicalprogress,andurbanisationareshapingthefutureofsocieties.Yet,theirquantitativeimpactsondevelopmentareneitherwellunderstoodnorestablished.Thispaperexaminestheindividualandcombinedeffectsoftheseglobalforcesonpoverty,usingbothcross-sectionandpanelestimationtechniquesonaglobaldatasetcoveringtheperiodfrom1995to2019.Regardingthedirecteffects,itfindsthatinequality,urbanization,andtechnologyarethemegatrendswitharobustimpactonpovertyinboththelongandmediumterms.Demographicshiftsandclimatechangehavesomeimpactonpoverty,buttheresultsdependonthesamplesandspecificationsconsidered.Furthermore,thepaperfindsthatinadditiontotheirdirecteffects,technology,urbanization,anddemographicshiftsaffectpovertythroughtheirinteractionswithincomeinequality.Amongthecontrols,percapitaincome,education,andprivatecreditaresignificantdriversinthemediumterm,whilepercapitaincomeistheonlycontrolvariablethatmattersinthelongrun.

Keywords

Poverty,megatrends,inequality,technology,climatechange,demography,urbanization.

Thefindings,interpretationsandconclusionsexpressedhereinarethoseoftheauthor(s)anddonotnecessarilyreflecttheviewsoftheUnitedNationsoritsofficialsorMemberStates.ThedesignationsemployedandthepresentationofmaterialonanymapinthisworkdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheUnitedNationsconcerningthelegalstatusofanycountry,territory,city,orareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersandboundaries.Thispaperhasnotbeenformallyedited.

Workingpaper

#07

May2024

Contents

Acknowledgements 2

1.Introduction 3

2.Transmissionmechanismslinkingglobalmegatrends

topoverty 6

3.Estimationapproach 10

4.Regressionresults 13

5.Conclusions 21

References 24

Annex 26

Acknowledgements

Theauthorsthanktwoanonymousreferees,aswellasUNCTADcolleagues,AnidaYupariAguadoandPaulAkiwumi,forcommentsonanearlierversionofthepaper.

2

Workingpaper

#07

May2024

1.

Introduction

Theeradicationofpovertyisthefundamentalpublicpolicychallengeofourtime.Itiscentraltofosteringsustainabledevelopmentatboththenationalandgloballevels.Itisalsoanimperativetoachievetheglobalmantrathatnooneshouldbeleftbehindinthedevelopmentprocess.Thisimportantfacthasbeenacknowledgedbytheinternationalcommunityasreflectedinthedecisionofworldleadersin2015todevotethefirstoftheseventeensustainabledevelopmentgoals(SDG)toendingpovertyinallitsformseverywhere.TherecognitionofthepivotalroleofpovertyeradicationinpromotingsustainedandsharedprosperityisalsoadrivingfactorinthedecisionoftheinternationalcommunitytodevotethefirstofthesixfocusareasoftheDohaProgrammeofActionforleastdevelopedcountriesto“Investinginpeople,eradicatingpovertyandbuildingcapacity.”

Overthepastfewdecades,significantprogresshasbeenmadeinreducingglobalpovertylargelyduetopositiveeconomicdevelopmentsinChinaandIndia.Usingthepovertyheadcountratiobasedonthe$2.15adaythreshold,theglobalpovertyratefellfrom37.8percentin1990to8.4percentin2019.1Despitethisprogressextremepovertyremainshighandtherearesignificantchallengestoaddressinseveralareas.Forexample,theprogressachievedtodatehasbeenunevenandpovertyisincreasinglyconcentratedinAfrica(Table1).2Inaddition,theeconomicandsocialenvironmentsinwhichgovernmentsmustdesignandimplementpoliciestocombatpovertyhavebecomemoreuncertainduetothefollowing“globalmegatrends”3:climatechange,demographicshifts,technologicalprogress,incomeinequalityandurbanisation.Theseglobalforcesposeseriousriskstothequestforsustainabledevelopment.Forexample,iftheseforcesarenotwellmanagedandifpresenttrendscontinue,itisunlikelythatgoal1oftheSDGoneradicatingpovertywillbeachievedbythe2030targetdate(UnitedNations2020).Notwithstandingtherisksposedbythesemegatrends,tothebestofourknowledge,thereisnoeconometricstudyexaminingtheindividualeffectsofmegatrendsonglobalpoverty(apartfromstudiesonincomeinequality).

1TheCovid-19pandemichasreversedsomeofthegainsachievedinthepastfewdecades.Asaresultofthepandemictheglobalpovertyraterosefrom8.4percentin2019to9.3percentin

2020andthendeclinedto8.4percentin2022(WorldBank2022).

2In1990,EastAsiaandPacificaccountedforabout52.9percentofglobalextremepoverty,SouthAsiafor28.2percentandSub-SaharanAfricafor13.6percent.In2019,thatisafterthreedecades,EastAsiaandPacificaccountedforonly3.6percentofglobalextremepoverty,SouthAsiafor24.1percentandSub-SaharanAfricafor60percent.Interestingly,unliketheotherregionswherethenumberofpoorpeopledeclinedbetween1990and2019,inSub-Saharan

Africathenumberofpoorpeopleincreasedfrom271.5millionto389million.

3Globalmegatrendsrefertomacroeconomic,social,andpoliticalforcesshapingthefutureofsocietieswithprofoundimpactsoneconomies.

3

Workingpaper

#07

May2024

Thereisalsonostudythatinvestigatesquantitativelyhowtheseforcesinteractandtheeffectoftheseinteractionsonpoverty.Againstthisbackdrop,ourpaperattemptstoaddressthecurrentlacunaintheliterature.

Theliteratureonthedriversofpovertyisvastandgrowing(Cerraetal.2021;Fosu2017;Epaulard2003;AliandThorbecke2000).Oneclassofthisliteratureusesaggregatemacroeconomicandsocialdatatoexaminethedeterminantsofpoverty.Forexample,LeGoffandSingh(2014)examinedtherelationshipbetweentradeopennessandpovertyusingpaneldataforAfricancountries.Theyfoundthattheeffectoftradeopennessonpovertydependsonthedepthofthefinancialsector,thelevelofeducationandthestrengthofinstitutions.Similarly,KpodarandSingh(2011)investigatedthelinkbetweenfinancialstructureandpovertyandfoundthatinanenvironmentwhereinstitutionsareweakbank-basedfinancialsystemscontributetopovertyreduction.Furthermore,asinstitutionsgetstrongermarket-basedfinancialsystemsbecomebeneficialforthepoor.Anotherclassoftheexistingliteraturefocusesontheroleofsectoralgrowthinunderstandingpovertyusingdisaggregateddata.BerardiandMarzo(2017)provideamethodologytostudytheelasticityofpovertywithrespecttosectoralgrowthatthecountrylevel.Theyarguethatboththecompositionofgrowthanditsoverallintensitymatterfortherelationshipbetweengrowthandpoverty.Inarelatedpaper,ErumbananddeVries(2021)examinetheroleofstructuralchangeingrowthandpovertyreduction.Theyfoundanassociationbetweenaggregatelabourproductivitygrowthandpovertyreductionindevelopingcountries.Theyalsofoundthatpovertyreductionwasassociatedwithstructuralchangeandmanufacturingproductivitygrowth.

Whilethepapersdiscussedabovehavemadeimportantcontributionstotheliteratureonthedriversofpoverty,theydonotinvestigatetheeffectsofglobalmegatrendsandtheirimplicationsforpovertyreduction.Inthisregard,ourpapercomplementsandaddsvaluetotheextantliteraturebyexaminingtheindividualimpactofeachoftheseglobalforcesonpoverty.Anothercontributionofthepaperisthatinadditiontoexaminingtheindividualeffectsofglobalmegatrendsonpoverty,wealsoinvestigatehowtheyinteractwithincomeinequality,andhowtheseinteractionsaffectpoverty.Thisisimportantbecausetheconfluenceoftheseglobalforcesmayhaveanimpactthatisquitedifferentfromtheirindividualeffects(Poloz2022).Thethirdcontributionofourpaperisthatitexaminesboththemediumandlong-rundriversofpovertywithcontrolsforotherpotentialcorrelatesofpovertyidentifiedintheliterature,namely:incomepercapita,education,infrastructure,institutions,trade,macroeconomicinstability,andfinancialdevelopment.

Therestofthepaperisorganisedasfollows.Section2discussesthetransmissionmechanismslinkingthefiveglobalmegatrendswithpovertyandexaminesthebilateralcorrelationbetweentheseforcesandameasureofpoverty:thepovertyheadcountratio.Insection3,wediscusstheempiricalstrategyadoptedinourpapertogetherwiththevariablesanddataused.Insection4,wepresentandanalysetheresultsforthebaselineregressions,conductrobustnesschecks,andexaminewhetherthereareinteractioneffectsamongmegatrends.Section5containssomeconcludingremarks.

4

5

Workingpaper

#07

May2024

Table1

PovertyratesandnumberofpooratUS$2.15perdaypovertyline

(Byregion)

Povertyheadcountratio(%)

Numberofpoorpeople

(millions)

1990201919902019

EastAsiaandPacific

65.8

1.1

1055.5

23.6

EuropeandCentralAsia

3.2

2.4

15.0

11.8

LatinAmericaandtheCaribbean

16.7

4.3

73.2

27.8

MiddleEastandNorthAfrica

6.1

-

14.0

-

SouthAsia

49.7

8.5

563

156.3

Sub-SaharanAfrica

53.3

35.1

271.5

389.0

Restoftheworld

0.5

0.6

4.1

6.7

World

37.8

8.4

1996.2

648.1

Source:CompiledbasedondatafromonlineannexofWorldBank(2022).

Workingpaper

#07

May2024

2.

Transmissionmechanismslinkingglobalmegatrendsto

poverty

Incomeinequality

Theeconomicliteraturesuggeststhatinequalityhasbothdirectandindirectconsequencesforpovertyreduction(Bourguignon2004;MarreroandServén2022).Thedirecteffectemanatesfromthefactthatforanygivengrowthrate,aworseningofincomedistributionwillincreasepoverty.Andtheindirecteffectarisesfromtheideathatinequalitycanincreasepovertybyinhibitinggrowththroughthefollowingmechanisms:creditmarketimperfections;socialconflicts;andredistributivedemocracy.Whentherearecreditmarketimperfectionsinaneconomypoorpeoplecannotborrowtoeitherexploitinvestmentopportunitiesoroffertheirchildrenagoodeducation.Inthiscontext,inequalityresultsinunderutilizationofacountry’spotentialandretardsgrowth(Bourguignon2004).Anotherchannelthroughwhichinequalityharmsgrowthisthatitfosterssocialandpoliticalinstabilitywhichisnotconducivetoinvestmentandgrowthinaneconomy(Ferreiraetal.2022).Inequalitycanalsoreducegrowthinademocraticsocietybecauseitincreasesthelikelihoodofadoptionofredistributionpolicieswhichwouldhavetobefinancedthroughhighertaxestherebyreducinggrowth(AlesinaandRodrik1994).Whilethemechanismsdiscussedaboveimplythatinequalityisbadforgrowth,itisworthnotingthatthereisalsoarelatedliteraturesuggestingthatinequalitycanfostergrowthbasedonthenotionthattherichhaveahighermarginalpropensitytosavethanthepoorandsoinequalityincreasessavingstherebyfacilitatinginvestmentandgrowth(Ferreiraetal.2022).

Climatechange

Amajorchannelthroughwhichclimatechangeaffectspovertyisbyreducingagriculturalproductionandgrowth(Hallegatteetal.2016).Byincreasingthefrequencyofextremeweathereventsandnaturalhazards(suchasheatwaves,drought,andflooding)climatechangehasanegativeeffectonagriculturalproductivityandproductionwithdireconsequencesforvulnerablepopulationswhodependonagriculturefortheirlivelihoods(UnitedNations2020).Climateinducedincreasesinprices,naturaldisastersandhealthproblemscanalsopushpeopleintopovertyaswellasreducetheabilityofthepoortoescapepovertytherebyincreasingthepovertyrate.Consequently,climatechangecanhaveasignificantnegativeimpactonpoverty,particularlyindevelopingeconomiesthatdonothavetheresourcesandcapacitytomitigateandadapttotheassociatedrisks.

6

Workingpaper

#07

May2024

Demographicshifts

Theworldisexperiencingasignificantslowdowninpopulationgrowthratesandshiftsinpopulationagestructures(WorldBank2016;UnitedNations2020).Inthedevelopedcountries,anincreaseinlifeexpectancycoupledwithlowfertilityrateshaveresultedinanincreaseintheproportionofolderpeople(aged65andabove)inthepopulation.Itiswell-knownthataspeoplegetoldertheirabilitytocarryoutnormaldailyactivitiesdeclines,andtheywillhavetorelyontheworkingagepopulationforcareandotherneeds.Consequently,achangingagestructurethatincreasestheproportionofolderpeopleinthepopulationwillincreasethedependencyratio,raisetheburdenontheworkingpopulation,andincreasepoverty.Incontrasttothedevelopedcountries,inthedevelopingcountriesthedemographictransitionisassociatedwithanincreaseintheworkingagepopulation,whichrepresentsademographicdividendandanopportunitytoraiselivingstandardstherebyreducingpoverty.

Technologicalprogress

Technologicalinnovationisanimportantsourceofproductivitygrowthandjobcreation,particularlyinnewsectorsandindustries.Butitalsocreateswinnersandlosersinaneconomyandsocouldhavebothpositiveandnegativeimpactsonpoverty.Forexample,iftechnologicalchangeislabour-augmentingtheoverallimpactislikelytobepoverty-reducingbutifitislabour-savingtheoverallimpactislikelytobepoverty-increasing.Inadditiontothefactor-biasoftechnologicalchange,thespeedoftechnologicalchangealsomattersindeterminingtheultimateimpactitcouldhaveonpovertyinaneconomy(KorinekandStiglitz2017).Whentechnologicalchangeoccursataslowpace,thepotentialdisruptioninthelabourmarketwillbelessbutwhenthepaceoftechnologicalchangeisfast,ittransformslabourmarketsrapidlyandinducesstructuralshiftsineconomiesthatcouldresultinsignificantjoblossesinoldsectorsandindustries.Inthiscontext,theimpactonpovertywilldependonhowexposedthepooraretoindustriesandsectorsthatarecontractingaswellasonhoweasyitisforthepoortotransitionintonewgrowthsectorsandindustriesresultingfromtechnologicalchanges.Itwillalsodependonwhethertechnologicalchangeisaccompaniedwithskillsdevelopmentandtrainingmeasuresaswellasredistributionpoliciesgearedtowardscushioningthepotentialnegativeimpactonthepoor.

Urbanization

Urbanizationinvolvesanincreaseintheurbanshareofthetotalpopulationofacountryandarisesprincipallyfromfoursources:anaturalincreaseinurbanpopulation,rural-urbanmigration,reclassificationofcities,andinternationalmigration(UnitedNations2020).Urbanizationcanhaveanimpactonpovertythroughdifferentmechanisms.Forexample,migrationofpeoplefromruraltourbanareascanincreaseboththeurbanwageintheformalsectorandtheruralwage(duetohigheragriculturalproductivity)therebyreducingpoverty.Itcanalsocontributetotheaccumulationofhumanandphysicalcapitaltherebyfosteringgrowthandcreatingthebasisforpovertyreduction(Haetal.2021).Historically,urbanizationintheadvancedeconomieswastriggeredanddrivenbyindustrializationwhichisanimportantengineofgrowth,jobcreationandpoverty

7

Workingpaper

#07

May2024

reduction(Gollinetal.2016).However,insomedevelopingcountries,particularlyinAfrica,urbanizationisassociatedwithrapidgrowthofinformalsector,slumformationsandhomelessness.Inthiscontext,althoughurbanizationcanplayapositiveroleinpovertyreductionandthedevelopmentprocess,itcanalsobeasourceofincreasesinpovertyifittakesplacewithoutindustrialdevelopmentandcreationofdecentjobs.

Havingdiscussedthetransmissionmechanismsthroughwhichtheglobalmegatrendscouldbelinkedtopoverty,itwouldbeinterestingtoexaminewhetherthereisanybilateralassociationbetweeneachofthemegatrendsandpovertyindicatorsinthedata,notingthatcorrelationsinthemselvesdonotimplycausality.Figure1presentsthebilateralcorrelationsbetweenthepovertyheadcountratioandselectedvariablesofinterestinthecross-sectionofcountries,withdataaveragedovertheperiod1995to2019.Thedataindicatesthatincomeinequality,theagedependencyratio(ameasureofdemographicshifts)andtheshareofpopulationaffectedbyclimate-relatednaturaldisasters(ameasureofclimatechange)arepositivelyassociatedwiththepovertyheadcountratio.Thecorrelationcoefficientsare0.64(inequality),0.74(demographicshifts),and0.09(climatechange).4Bycontrast,theshareoftheurbanpopulationintotalpopulation(aproxyforurbanization)andthepercentageofthepopulationusingtheinternet(aproxyfortechnologicalchange)arenegativelyassociatedwiththepovertyheadcountratio,withcorrelationcoefficientsequalto-0.61and-0.54respectively.Inaddition,thepovertyheadcountisstronglynegativelycorrelatedwithincomepercapita,withacorrelationcoefficientof-0.76.

4OnepossiblereasonforthislowcorrelationbetweenclimatechangeandpovertyinthedataisthatalthoughglobalextremepovertyisheavilyconcentratedinAfrica,mostofthoseaffectedbynaturaldisastersareinAsiaandthePacific(UNFPA2018).Furthermore,climatechangehasmultipledimensions(UnitedNations2020),anditisdifficulttocapturethedifferentdimensionsinoneindicator.

8

Workingpaper

#07

May2024

Figure1

Bivariatecorrelationsofpovertywithselectedvariables

Povertyheadcount

204060

0

PovertyheadcountPovertyheadcountPovertyheadcount

60

0204060020406002040

3040506070

Incomeinequality

Povertyheadcount

0204060

20406080100

Urbanization

Povertyheadcount

60

02040

020406080

Internetusers

406080100

Agedependency

01234

Climatechange(disaster−affectedpopulation)

7891011

Incomepercapita(ln)

Note:Eachdotisthemedianforacountryovertheperiod1995-2019.

9

Workingpaper

#07

May2024

3.

Estimationapproach

Theempiricalstrategyweadoptistwo-fold.First,weexaminetheempiricalrelationshipbetweenglobalmegatrendsandpovertyusingcross-sectiondata,whichcanbeinterpretedasrepresentingthelong-runeffectsofthesemegatrendsonpoverty.Second,wetakeadvantageofthepanelstructureofthedatabyestimatingpanelregressionswhichprovideinsightsintothemedium-runimpactsofthesemegatrendsonpoverty.Weestimatethepanelregressionsusingthefixedeffectsapproach,whichpermitsustocontrolfortimeinvariantcountrycharacteristicsandtimeeffectstherebymitigatingomittedvariablebias.Whilethefixedeffectsapproachaccountsforomittedvariablebias,itdoesnotcontrolforpotentialreversecausality.Tomitigatetheriskofreversecausalityinthefixed-effectsmodel,wealsoconductestimationsusinglagged,ratherthancontemporaneous,valuesofallregressors(seeBlotevogeletal.2022).5

Empiricalspecification

Webeginourempiricalinvestigationoftherelationshipbetweenglobalmegatrendsandpovertybyestimatingacross-sectionpovertyregressionasspecifiedinEquation(1).

Povertyi=λ+α’Mi+β’Xi+εi(1)

wheresubscriptidenotescountry,Povertyiisameasureofpovertyincountryi,Miisavectorcontainingcountry-levelindicatorsofthefivemegatrendsofinterestinthisstudy(inequality,urbanization,demographicshift,climatechange,andtechnologicalprogress),andαisavectorofrespectivecoefficientsonthemegatrends.Xiisavectorofcontrolvariables(income,education,tradepolicy,accesstocredit,macroeconomicinstability,andinstitutions),andβisavectorofcoefficientsonthecontrols.λisaconstantandεiisanerrorterm.

InadditiontoEquation(1),wealsoestimatethefollowingpanelregression6byfixedeffects:

Povertyit=α’Mit+β’Xit+μi+γt+εit(2)

5WealsotriedestimationbySystemGMM,buttheestimateswerehighlyunstableandimprecise,particularlywhenthevariablesareinnon-logform,reflectinginparttheweakinstrumentproblem.

6SeeforexampleDollarandKraay(2004).

10

Workingpaper

#07

May2024

wheresubscriptsiandtindicate,respectively,countryandtime(5-yearperiods).Povertyitisanindicatorofpovertyincountryiattimet.ThevectorMitcapturesfiveglobalmegatrends(inequality,urbanization,demographicshift,climatechange,andtechnologicalprogress)andαisavectoroftheirrespectivecoefficients.containscontrolvariables(income,education,tradepolicy,accesstocredit,macroeconomicinstability,andinstitutions)andβisthevectoroftheircoefficients.Timeinvariantcountrycharacteristics(orcountryfixedeffects)arecapturedbyμi,γtisatimeeffectandεitisanerrorterm.Wefirstuseacontemporaneousspecification,andthenaspecificationwithallregressorslaggedbyoneperiod(representing5years)tomitigatetheriskofreversecausality(Blotevogeletal.2022).

Insection2weprovidedanexplanationofthemechanismsthroughwhichthefiveglobalmegatrendscouldaffectpovertyanddiscussedtheexpectedsigns.Consequently,inthissectionwesimplydiscussthechoiceofthecontrolvariablesincludedintheregressionsandtheirexpectedsigns.Ourchoiceofthecontrolvariablesisguidedbytheliteratureanddataavailability.Incomepercapitaisoneofthevariablesweincludetocontrolforthelevelofeconomicdevelopmentwiththeexpectationthatahigherlevelofdevelopmentisassociatedwithlesspoverty.Incomeisalsoanimportantcontrolvariablebecausetheliteraturesuggeststhateconomicgrowthisamajordriverofchangesinpoverty,withhighergrowthexpectedtodecreasepovertyforagivenincomedistribution(Bourguignon2004).Theliteraturealsosuggeststhatanincreaseinhumancapitaloreducationdecreasestheincidenceofpovertythrough,forexample,enhancingjobprospectsandmakingiteasiertoearndecentwages(Rahman2013).Tradeisanothervariablethathasbeenwidelydiscussedasapotentialdriverofpovertyalthoughtheoreticallyitsimpactisambiguous(LeGoffandSingh2014):ontheonehandgreateropennessincreasesconsumerchoiceandprovidesaccesstolargermarketsforagriculturalgoodsproducedinsectorswherethepoorareheavilyconcentrated.Ontheotherhand,moreopennessincreasescompetitionandreducesthebargainingpowerofunskilledlabourrelativetoskilledlabourandcapital.Furthermore,tariffliberalizationmayresultinlossoftariffrevenuesimpactingpovertythroughthischannel.Macroeconomicinstabilityasreflectedininflationorinflationvolatilityisexpectedtoincreasepovertybyreducingtherealwageandincomeofthepoor(Epaulard2003).Financialdevelopmentisexpectedtoreducepovertyby,forexample,makingitpossibleforthepoortoborrowagainstfutureearningsandtoinvest.Itcanalsoreducepovertybymakingiteasierforhouseholdstomanagerisks(KpodarandSingh2011).Institutionsarealsoconsideredtoplayanimportantroleinpovertyalleviation,withpoorqualityinstitutionsexpectedtoincreasepovertythrough,forexample,reducinglabourandcapitalproductivityandcreatingpovertytraps(TebaldiandMohan2010).

11

Workingpaper

#07

May2024

Datasourcesandvariabledefinitions

Themainmeasureofpoverty,thedependentvariable,usedinourempiricalanalysesisthepovertyheadcountratio.However,wealsousedthepovertygapinthesectionwhereweconductedrobustnesschecks.ThetwopovertyindicatorsaresourcedfromtheWorldDevelopmentIndicators(WDI)databaseoftheWorldBank,andtheindicatorsarebasedonthelatestpovertythresholdof2.15$aday(2017PPP).7Asiscommonintheempiricalliterature,wemeasureincomeinequalitybytheGinicoefficientofpre-taxincomesourcedfromthecross-countrycomparablecompaniondatasetdevelopedbyUNU-WIDER(2022).Intherobustnesschecks,wealsousethePalmaratiofromUNU-WIDERasanalternativetotheGinicoefficient,whilerecognisingthatitonlycapturesthetailsratherthantheentireincomedistribution.OurincomemeasureisGDPpercapitaobtainedfromtheWDI.UrbanizationismeasuredbytheshareofurbanpopulationintotalpopulationsourcedfromtheWDIandbytheshareofurbansurfaceinthetotalsurfaceobtainedfromFAO(2022).Demographicshiftiscapturedbytheagedependencyratio,i.e.theratioofpeopleyoungerthan15andolderthan64totheworkingagepopulation(thoseaged15-64).ThedemographicshiftvariableisfromtheWDI.Climatechangeismeasuredbytheshareofpopulationaffectedbyclimate-relatednaturaldisasters(includingdroughts,floodsandextremetemperatureevents)andvalueofalleconomiclossesduetosuchdisasters,withbothmeasuresbeingobtainedfromtheEmergencyEventsDatabaseEM-DAT(CRED2023).Tech

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论