![山东省济南市章丘区2025届高三下第三次调研考试数学试题含解析_第1页](http://file4.renrendoc.com/view14/M0B/0B/0C/wKhkGWbKqyiACX-DAAJLGcRc5mY667.jpg)
![山东省济南市章丘区2025届高三下第三次调研考试数学试题含解析_第2页](http://file4.renrendoc.com/view14/M0B/0B/0C/wKhkGWbKqyiACX-DAAJLGcRc5mY6672.jpg)
![山东省济南市章丘区2025届高三下第三次调研考试数学试题含解析_第3页](http://file4.renrendoc.com/view14/M0B/0B/0C/wKhkGWbKqyiACX-DAAJLGcRc5mY6673.jpg)
![山东省济南市章丘区2025届高三下第三次调研考试数学试题含解析_第4页](http://file4.renrendoc.com/view14/M0B/0B/0C/wKhkGWbKqyiACX-DAAJLGcRc5mY6674.jpg)
![山东省济南市章丘区2025届高三下第三次调研考试数学试题含解析_第5页](http://file4.renrendoc.com/view14/M0B/0B/0C/wKhkGWbKqyiACX-DAAJLGcRc5mY6675.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市章丘区2025届高三下第三次调研考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数z满足,则()A. B. C. D.2.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A. B.C. D.3.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17644.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.5.已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为()A. B. C. D.6.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()A. B. C. D.7.集合,,则()A. B. C. D.8.已知集合,则集合()A. B. C. D.9.已知向量,,若,则()A. B. C. D.10.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为()A.①③ B.②③ C.①④ D.②④11.已知为虚数单位,复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.14.根据如图的算法,输出的结果是_________.15.已知实数满足则点构成的区域的面积为____,的最大值为_________16.已知不等式的解集不是空集,则实数的取值范围是;若不等式对任意实数恒成立,则实数的取值范围是___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,求证:(1);(2).18.(12分)如图,在中,点在上,,,.(1)求的值;(2)若,求的长.19.(12分)在中,角、、所对的边分别为、、,角、、的度数成等差数列,.(1)若,求的值;(2)求的最大值.20.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.21.(12分)已知函数.(1)若函数不存在单调递减区间,求实数的取值范围;(2)若函数的两个极值点为,,求的最小值.22.(10分)已知(1)当时,判断函数的极值点的个数;(2)记,若存在实数,使直线与函数的图象交于不同的两点,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
先化简得再求得解.【详解】所以.故选:D本题主要考查复数的运算和模的计算,意在考查学生对这些知识的理解掌握水平.2.C【解析】
在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C本题考查等比数列求和公式的应用,属于基础题.3.A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A本小题主要考查合情推理,考查中国古代数学文化,属于基础题.4.B【解析】
根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.本题考查函数周期的求解,涉及对数运算,属综合基础题.5.A【解析】
根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,,所以双曲线方程为.故选:A.本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.6.B【解析】
先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.7.A【解析】
计算,再计算交集得到答案.【详解】,,故.故选:.本题考查了交集运算,属于简单题.8.D【解析】
弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又,,则,故集合.故选:D.本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.9.A【解析】
利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,,,,解得.故选A.本题考查向量平行定理,考查向量的坐标运算,属于基础题.10.C【解析】
分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,,此时不存在图象;(2)当时,,此时为实轴为轴的双曲线一部分;(3)当时,,此时为实轴为轴的双曲线一部分;(4)当时,,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于①,在上单调递减,所以①正确;对于②,函数与的图象没有交点,即没有零点,所以②错误;对于③,由函数图象的对称性可知③错误;对于④,函数和图象关于原点对称,则中用代替,用代替,可得,所以④正确.故选:C本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.11.B【解析】
求出复数,得出其对应点的坐标,确定所在象限.【详解】由题意,对应点坐标为,在第二象限.故选:B.本题考查复数的几何意义,考查复数的除法运算,属于基础题.12.D【解析】
列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.本题考查了古典概率的计算,意在考查学生的应用能力.二、填空题:本题共4小题,每小题5分,共20分。13.(1),;(2),.【解析】
(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【详解】(1)直线的普通方程为.在曲线的参数方程中,,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,,所以点到直线的距离的最小值为.此时点的坐标为.本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.14.55【解析】
根据该For语句的功能,可得,可得结果【详解】根据该For语句的功能,可得则故答案为:55本题考查For语句的功能,属基础题.15.811【解析】
画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.本题考查简单线性规划问题,涉及区域面积的求解,属基础题.16.【解析】
利用绝对值的几何意义,确定出的最小值,然后根据题意即可得到的取值范围化简不等式,求出的最大值,然后求出结果【详解】的最小值为,则要使不等式的解集不是空集,则有化简不等式有,即而当时满足题意,解得或所以答案为本题主要考查的是函数恒成立的问题和绝对值不等式,要注意到绝对值的几何意义,数形结合来解答本题,注意去绝对值时的分类讨论化简三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)见解析.【解析】
(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论.【详解】(1)∵,∴,当且仅当a=b=c等号成立,∴;(2)由基本不等式,∴,同理,,∴,当且仅当a=b=c等号成立∴.本题考查不等式的证明,考查用基本不等式证明不等式成立.解题关键是发现基本不等式的形式,方法是综合法.18.(1);(2).【解析】
(1)由两角差的正弦公式计算;(2)由正弦定理求得,再由余弦定理求得.【详解】(1)因为,所以.因为,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.本题考查两角差的正弦公式,考查正弦定理和余弦定理,属于中档题.19.(1);(2).【解析】
(1)由角的度数成等差数列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以当,即时,.【方法点睛】解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化.逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:①统一成角进行判断,常用正弦定理及三角恒等变换;②统一成边进行判断,常用余弦定理、面积公式等.20.(1),;(2).【解析】
(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;(2)设点对应的参数分别为,则,,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,,则,求得取最小值时符合的条件,进而求得直线的普通方程.【详解】(1)设点极坐标分别为,,因为,则,所以曲线的极坐标方程为,两边同乘,得,所以的直角坐标方程为,即.(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.由韦达定理得,,所以,当且仅当时,等号成立,则,所以当取得最小值时,直线的普通方程为.本题考查极坐标与直角坐标方程的转化,考查利用直线的参数方程研究直线与圆的位置关系.21.(1)(2)【解析】分析:(1)先求导,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范围.(2)先由得到,再求得,再构造函数再利用导数求其最小值.详解:(1)由函数有意义,则由且不存在单调递减区间,则在上恒成立,上恒成立(2)由知,令,即由有两个极值点故为方程的两根,,,则由由,则上单调递减,即由知综上所述,的最小值为.点睛:(1)本题主要考查利用导数求函数的单调区间和极值,考查利用导数求函数的最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的难点有两个,其一是求出,其二是构造函数再利用导数求其最小值.22.(1)没有极值点;(2)证明见解析【解析】
(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版九年级数学上册21.3.1《一元二次方程的根与系数的关系》听评课记录
- 2025年便携式X荧光光谱分析仪合作协议书
- 七年级第二学期工作总结
- 苏科版数学七年级下册8.1.1《同底数幂的乘法》听评课记录
- 公司职工食堂承包协议书范本
- 装饰装修劳务分包合同范本
- 2025年度新能源电站租赁诚意金合同
- 2025年度装修施工现场安全监督合同
- 二零二五年度航空航天设备采购合同知识产权保护及实施约定
- 2025年度航空航天零部件购买协议范文汇编
- 光伏发电项目屋面作业安全检查表
- GB/T 7251.5-2017低压成套开关设备和控制设备第5部分:公用电网电力配电成套设备
- 2023年湖南高速铁路职业技术学院高职单招(数学)试题库含答案解析
- 中考语文非连续性文本阅读10篇专项练习及答案
- 勇者斗恶龙9(DQ9)全任务攻略
- 经颅磁刺激的基础知识及临床应用参考教学课件
- 小学语文人教四年级上册第四单元群文阅读“神话故事之人物形象”PPT
- 乡村振兴汇报课件
- 红色记忆模板课件
- ISO 31000-2018 风险管理标准-中文版
- 油气藏类型、典型的相图特征和识别实例
评论
0/150
提交评论