版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第14课导数与函数的极值、最值(分层专项精练)【一层练基础】一、单选题1.(2023春·四川遂宁·高三射洪中学校考阶段练习)已知,且函数恰有两个极大值点在,则的取值范围是(
)A. B. C. D.【答案】B【分析】运用整体思想法,求得的范围,再运用正弦函数图象分析即可.【详解】∵,,∴,又∵在恰有2个极大值点,∴由正弦函数图象可知,,解得:.故选:B.2.(2023·四川宜宾·四川省宜宾市第四中学校校考三模)已知函数和有相同的极大值,则(
)A.0 B.2 C. D.【答案】A【分析】利用导数,先求得的极大值,然后根据与有相同的极大值求得.【详解】求导,令,解得,令,解得,∴在上单调递增,在上单调递减,∴在处取得极大值,,令,解得,令,解得,∴在上单调递增,在上单调递减,∴在处取得极大值,依据题意,和有相同的极大值,故,解得.故选:A3.(2023·广西南宁·南宁三中校考模拟预测)当时,函数取得最小值,则(
)A. B. C. D.【答案】C【分析】求出导函数,由题意,解得,即可计算.【详解】当时,函数取得最小值,所以,所以,得,又,根据函数在处取得最值,所以即得,所以,.故选:C.4.(2023·广西·统考模拟预测)已知函数存在最大值0,则的值为(
)A. B. C.1 D.【答案】B【分析】讨论与0的大小关系确定的单调性,求出的最大值.【详解】因为,,所以当时,恒成立,故函数单调递增,不存在最大值;当时,令,得出,所以当时,,函数单调递增,当时,,函数单调递减,所以,解得:.故选:B.二、多选题5.(2023·江苏镇江·扬中市第二高级中学校考模拟预测)关于函数,下列判断正确的是(
)A.函数的图像在点处的切线方程为B.是函数的一个极值点C.当时,D.当时,不等式的解集为【答案】ACD【分析】先对函数求导,得到,求出函数的图像在点处的切线方程,即判断A;根据时,恒成立,得到函数单调,无极值点,可判断B;根据导数的方法求出时,的最小值,即可判断C;根据导数的方法判断时函数的单调性,根据单调性列出不等式组求解,即可得出结果.【详解】因为,所以,,所以,因此函数的图像在点处的切线方程为,即,故A正确;当时,在上恒成立,即函数在定义域内单调递减,无极值点;故B错;当时,,由得;由得,所以函数在上单调递减,在上单调递增;因此,即;故C正确;当时,在上恒成立,所以函数在上单调递减;由可得,解得:,故D正确;故选:ACD.【点睛】本题主要考查求曲线在某一点处的切线方程,以及导数的方法研究函数的单调性、极值最值等,属于常考题型.6.(2023·全国·高三专题练习)对于函数,则(
)A.有极大值,没有极小值B.有极小值,没有极大值C.函数与的图象有两个交点D.函数有两个零点【答案】AD【分析】对函数求导,通过求导判断函数的单调性从而可知函数是否有极值;画出函数与的图象从而可判断交点个数;函数有两个零点价于函数与图像有两个交点,数形结合即可判断.【详解】,则,因为在恒成立.所以当时,,在单调递减;当时,,在单调递增;所以在处有极大值,没有极小值,故A正确,B错误;根据的单调性,画出函数图像,以及的图象,如图:由此可知,函数与的图象只有一个交点,故C错误;函数有两个零点等价于函数与图像有两个交点,如下图所示:由此可知,函数与图像有两个交点,即函数有两个零点;故D正确.故选:AD.三、填空题7.(2023·湖南岳阳·湖南省岳阳县第一中学校考二模)已知函数有2个极值点,,则.【答案】0【分析】由得,然后根据函数解析式结合条件即得.【详解】因为函数有两个极值点与由,则的两根为与,所以,即,由,可得,所以.故答案为:0.8.(2023·辽宁沈阳·沈阳二中校考模拟预测)函数的极小值点为.【答案】2【分析】利用求解函数的极值点,再根据函数的单调性,判断极小值点与极大值点即可.【详解】因为函数,所以,得,令可得函数增区间为,可得函数的减区间为,所以在处取得极小值为,所以函数的极小值点为2.故答案为:2.9.(2023·全国·高三专题练习)若是函数的极小值点,则函数在区间上的最大值为.【答案】/【分析】求导,根据极值点可得,进而解得或,代入验证极值点可确定,进而根据极大值以及端点处的函数值进行比较即可求解.【详解】由,得,因为是函数的极小值点,所以,即,即,解得或.当时,,当或时,,当时,,所以,在区间,上单调递增,在上单调递减,所以是函数的极大值点,不符合题意;当时,,当或时,,当时,,所以在区间,上单调递增,在上单调递减,所以是函数的极小值点,是函数的极大值点,故又因为,,所以函数在的最大值为.故答案为:.10.(2023·安徽滁州·安徽省定远中学校考模拟预测)若函数在区间上的最小值为,则的取值范围是.【答案】【分析】根据导数判断单调性与最值情况.【详解】由,得,所以函数在上单调递减,在上单调递增,且,所以,即,所以的取值范围是,故答案为:.【二层练综合】一、单选题1.(2023春·陕西商洛·高二校考阶段练习)已知函数的图象上存在点,函数的图象上存在点,且,关于轴对称,则的取值范围是(
)A. B.C. D.【答案】A【详解】因为函数与函数的图象关于x轴对称,根据已知得函数的图象与函数的图象有交点,即方程在上有解,即在上有解.令,,则,可知在上单调递增,在上单调递减,故当时,,由于,,且,所以.故选:A.2.(2023秋·福建莆田·高三莆田第四中学校考阶段练习)若函数有两个极值点,且,则(
)A. B. C. D.【答案】C【分析】由极值点定义确定的关系,化简,由此求的范围.【详解】因为函数有两个极值点,又函数的定义域为,导函数为,所以方程由两个不同的正根,且为其根,所以,,,所以,则,又,即,可得,所以或(舍去),故选:C.二、多选题3.(2023春·湖南郴州·高二校考阶段练习)设函数,则下列说法正确的是(
)A.没有零点 B.当时,的图象位于轴下方C.存在单调递增区间 D.有且仅有两个极值点【答案】BC【分析】根据,求得的符号,即可判断B;利用导数求出函数的单调区间,即可判断C;再结合零点的存在性定理即可判断A;再根据极值点的定义即可判断D.【详解】函数的定义域为,,令,则,所以函数在上递减,又,所以存在上,使得,即函数有唯一零点,且,当时,,即,函数递增,故C正确;当时,,即,函数递减,所以为函数的极大值点,无极小值点,即有且仅有一个极值点,故D错误;所以,又,所以函数在上存在一个零点,故A错误;当时,,所以,即当时,的图象位于轴下方,故B正确.故选:BC.三、填空题4.(2023·广东佛山·华南师大附中南海实验高中校考模拟预测)函数,若关于x的不等式的解集为,则实数a的取值范围为.【答案】【分析】分和两种情况讨论,当时,根据二次函数的图象得到,当时,分和两种情况讨论,时,将转化为,然后借助函数的单调性和最值解不等式即可.【详解】由题意知,当时,;当时,;当时,.当时,,结合图象知;当时,,当时,显然成立;当时,,令,则,所以在单调递增,在单调递减,所以,所以.综上,实数a的取值范围为.故答案为:.【三层练能力】1.(2023·全国·高三专题练习)函数,则(
)A.,使得在上递减B.,使得直线为曲线的切线C.,使得既为的极大值也为的极小值D.,使得在上有两个零点,且【答案】BCD【分析】根据函数单调由即可求解A,根据切点为的切线,即可求解B,求导,利用导数的正负确定单调性即可确定极小值,结合对称性即可确定极大值,举例求解D.【详解】A.若,使得在上递减,则,代入得,解得且,故不存在,因此不存在,使得在上递减,故A错;B.当时,,当切点为时,则只需,故B对;C.注意到,令,另一方面,时,,当时,,当时,此时时,取极小值,此时为极小值,由,所以函数的图象关于对称,由对称性可知:为的极大值,此时也为极大值.故C对;对于D,令,,函数在上有两个零点,,所以,故D正确;故选:BCD【点睛】对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2.(2023·高二单元测试)函数(e为自然对数的底数),则下列选项正确的有(
)A.函数的极大值为1B.函数的图象在点处的切线方程为C.当时,方程恰有2个不等实根D.当时,方程恰有3个不等实根【答案】BD【分析】求出函数的导数,利用导数探讨极大值判断A;利用导数的几何意义求出切线方程判断B;分析函数性质并结合函数图象判断CD作答.【详解】对于A:,在区间,上,,单调递增,在区间上,,单调递减,所以的极大值为,A错误;对于B:,,则函数图象在点处的切线方程为,即,B正确;对于C、D:因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论