版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
期末模拟卷(5)(时间:100分钟满分:100分)一.选择题(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求请把你认为正确的题号填入题后面的括号內)1.(3分)下列式子中,属于最简二次根式的是()A. B. C. D.【分析】依据最简二次根式的定义对各选项进行推断.【解答】解:=3,=2,=,而为最简二次根式.故选:A.2.(3分)下列各图能表示y是x的函数是()A. B. C. D.【分析】依据函数的定义可知,满意对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析推断后利用解除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.3.(3分)一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应当关注鞋子尺码的()尺码/cm2222.52323.52424.525销售量/双46620455A.平均数 B.中位数 C.众数 D.方差【分析】依据平均数、中位数、众数、方差的意义分析推断即可,得出鞋店老板最关切的数据.【解答】解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴商家更应当关注鞋子尺码的众数.故选:C.4.(3分)历史上对勾股定理的一种证法采纳了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDB C.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD【分析】用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.【解答】解:∵由S△EDA+S△CDE+S△CEB=S四边形ABCD.可知ab+c2+ab=(a+b)2,∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,∴证明中用到的面积相等关系是:S△EDA+S△CDE+S△CEB=S四边形ABCD.故选:D.5.(3分)下列命题中,是真命题的是()A.对角线相互平分的四边形是平行四边形 B.对角线相等的四边形是矩形 C.对角线相互垂直的四边形是菱形 D.对角线相互垂直平分的四边形是正方形【分析】依据特别四边形的判定定理进行推断即可.【解答】解:A、对角线相互平分的四边形是平行四边形,正确;B、对角线相等的四边形是矩形,还可能是等腰梯形,错误;C、对角线相互垂直的四边形是菱形,还可能是梯形,错误;D、对角线相互垂直平分的四边形是菱形,错误;故选:A.6.(3分)某天小明骑自行车上学,途中因自行车发生故障,修车耽搁了一段时间后接着骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15分钟 B.学校离家的距离为2000米 C.到达学校时共用时间20分钟 D.自行车发生故障时离家距离为1000米【分析】视察图象,明确每一段小明行驶的路程,时间,作出推断.【解答】解:由图可知,修车时间为15﹣10=5分钟,可知A错误;B、C、D三种说法都符合题意.故选:A.7.(3分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.1<x<2 B.0<x<2 C.0<x<1 D.1<x【分析】由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.【解答】解:由于直线y1=kx+b过点A(0,2),P(1,m),则有:,解得.∴直线y1=(m﹣2)x+2.故所求不等式组可化为:mx>(m﹣2)x+2>mx﹣2,不等号两边同时减去mx得,0>﹣2x+2>﹣2,解得:1<x<2,故选:A.8.(3分)已知钝角三角形的三边为2、3、4,该三角形的面积为()A. B. C. D.【分析】利用勾股定理得出BD的长,进而利用三角形面积求法得出答案.【解答】解:如图所示:过点B作BD⊥AC于点D,设BD=x,CD=y,则AD=4﹣y,故在Rt△BDC中,x2+y2=32,故在Rt△ABD中,x2+(4﹣y)2=22,故9+16﹣8y=4,解得:y=,∴x2+()2=9,解得:x=,故三角形的面积为:×4×=.故选:D.9.(3分)如图,在△ABC中,∠C=90°,AC=6,BC=8,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.1.2 B.2.4 C.2.5 D.4.8【分析】连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【解答】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=6,BC=8,∴AB=10,∴PC的最小值为:.∴线段EF长的最小值为4.8.故选:D.10.(3分)若代数式+有意义,则一次函数y=(k﹣1)x+(1﹣k)的图象可能是()A. B. C. D.【分析】依据二次根式有意义的条件和分式有意义的条件得到k﹣1>0,解k>1,则1﹣k<0,然后依据一次函数与系数的关系可推断一次函数的位置,从而可对各选项进行推断.【解答】解:依据题意得k﹣1>0,解k>1,因为k﹣1>0,1﹣k<0,所以一次函数图象在一、三、四象限.故选:B.11.(3分)矩形ABCD与矩形CEFG如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH.若BC=EF=3,CD=CE=1,则GH=()A. B. C.2 D.【分析】延长GH交AD于M点,由矩形的性质得出CD=CE=FG=1,BC=EF=CG=3,BE∥AD∥FG,推出DG=CG﹣CD=2,∠HAM=∠HFG,由ASA证得△AMH≌△FGH,得出AM=FG=1,MH=GH,则MD=AD﹣AM=2,在Rt△MDG中,GM==2,即可得出结果.【解答】解:延长GH交AD于M点,如图所示:∵四边形ABCD与四边形CEFG都是矩形,∴CD=CE=FG=1,BC=EF=CG=3,BE∥AD∥FG,∴DG=CG﹣CD=3﹣1=2,∠HAM=∠HFG,∵AF的中点H,∴AH=FH,在△AMH和△FGH中,,∴△AMH≌△FGH(ASA).∴AM=FG=1,MH=GH,∴MD=AD﹣AM=3﹣1=2,在Rt△MDG中,GM===2,∴GH=GM=,故选:A.12.(3分)如图,在四边形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,AE平分∠BAC,AO=CO,AD=DC,下面结论:①AC=2AB;②△ABO是等边三角形;③S△ADC=3S△ABE;④DC=2BE;其中正确的有()A.1个 B.2个 C.3个 D.4个【分析】由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,由BE=AE=CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=AE,则DC=2BE,④正确;即可得出结果.【解答】解:∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∵AD=DC,∴四边形AECD是菱形,∴AE=EC=CD=AD,∴∠EAC=∠ECA,∵AE平分∠BAC,∴∠EAB=∠EAC,∴∠EAB=∠EAC=∠ECA,∵∠ABC=90°,∴∠EAB=∠EAC=∠ECA=30°,∴BE=AE,AC=2AB,①正确;∵AO=CO,∴AB=AO,∵∠EAB=∠EAC=30°,∴∠BAO=60°,∴△ABO是等边三角形,②正确;∵四边形AECD是菱形,∴S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,∵BE=AE=CE,∴S△ADC=2S△ABE,③错误;∵DC=AE,BE=AE,∴DC=2BE,④正确;故选:C.二.填空题:(本大题共6个小题,每小题3分,共18分.将答案干脆填写在题中横线上).13.(3分)使函数y=+(2x﹣1)0有意义的x的取值范围是x>﹣3且..【分析】依据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得,解得x>﹣3且.故答案为:x>﹣3且.14.(3分)甲、乙两人各进行10次射击竞赛,平均成果均为9环,方差分别是:S甲2=2,S乙2=4,则射击成果较稳定的是甲(选填“甲”或“乙”).【分析】依据方差的意义可作出推断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为甲的方差最小,所以射击成果较稳定的是甲;故答案为:甲15.(3分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为22.4.【分析】因为一组数据:25,29,20,x,14,它的中位数是24,则这组数据为14,20,23,25,29,所以其平均数可求.【解答】解:∵一组数据:25,29,20,x,14,它的中位数是24,所以x=24,∴这组数据为14,20,24,25,29,∴平均数=(14+20+24+25+29)÷5=22.4.故答案是:22.4.16.(3分)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是20.【分析】AC与BD相交于点O,如图,依据菱形的性质得AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,则可在Rt△AOD中,依据勾股定理计算出AD=5,于是可得菱形ABCD的周长为20.【解答】解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.17.(3分)如图,直线y=x+1与y轴交于点A1,依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBn∁nCn﹣1,使得点A1、A2、…,An在直线x+1上,点C1、C2、…∁n在x轴上,则点B2024的坐标是(22024﹣1,22024).【分析】先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,依据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n﹣1,2n﹣1),据此即可求解点B2024的坐标.【解答】解:∵令x=0,则y=1,∴A1(0,1),∴OA1=1.∵四边形A1B1C1O是正方形,∴A1B1=1,∴B1(1,1).∵当x=1时,y=1+1=2,∴B2(3,2);同理可得,B3(7,4);∴B1的纵坐标是:1=20,B1的横坐标是:1=21﹣1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22﹣1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23﹣1,∴Bn的纵坐标是:2n﹣1,横坐标是:2n﹣1,则Bn(2n﹣1,2n﹣1),∴点B2024的坐标是(22024﹣1,22024).故答案为(22024﹣1,22024).18.(3分)一个有进水管与出水管的容器,从某时刻起先的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a=15.【分析】首先求出进水管以及出水管的进出水速度,进而利用容器内的水量为等式求出即可.【解答】解:由图象可得出:进水速度为:20÷4=5(升/分钟),出水速度为:5﹣(30﹣20)÷(12﹣4)=3.75(升/分钟),(a﹣4)×(5﹣3.75)+20=(24﹣a)×3.75解得:a=15.故答案为:15.三.解答题:(本大题共6个小题,共46分.解答应写岀文字说明、证明过程或推理步骤.)19.(10分)(1)计算:;(2)已知x=+1,y=﹣1,求x2﹣y2的值.【分析】(1)依据二次根式的性质、二次根式的混合运算法则计算;(2)依据平方差公式计算.【解答】解:(1)原式=7﹣9+3﹣1=0;(2)x=+1,y=﹣1,x+y=2,x﹣y=2,则x2﹣y2=(x+y)(x﹣y)=4.20.(10分)(1)如图,在平行四边形ABCD中,过点B作BM⊥AC于点E,交CD于点M,过点D作DN⊥AC于点F,交AB于点N.①求证:四边形BMDN是平行四边形;②已知AF=12,EM=5,求MC的长.(2)已知函数y=(2m+1)x+m﹣3.①若函数图象经过原点,求m的值.②若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【分析】(1)①只要证明DN∥BM,DM∥BN即可;②只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,依据勾股定理AN=即可解决问题;(2)①依据待定系数法,只需把原点代入即可求解;②直线y=kx+b中,y随x的增大而减小说明k<0.【解答】(1)①证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四边形BMDN是平行四边形;②解:∵四边形BMDN是平行四边形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN(AAS),∴FN=EM=5,在Rt△AFN中,CM==13;(1)解:①把(0,0)代入,得m﹣3=0,m=3;②依据y随x的增大而减小说明k<0,即2m+1<0,m<﹣.21.(5分)某校240名学生参与植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?【分析】(1)依据抽查人数减去A、B、C类人数,求出D类的人数,然后补全统计图即可;(2)依据众数的定义解答,依据中位数的定义,找出第10人和第11人植树的平均棵树,然后解答即可;(3)求出20人植树的平均棵树,然后乘以总人数240计算即可得解.【解答】解:(1)D类的人数为:20﹣4﹣8﹣6=20﹣18=2人,补全统计图如图所示:;(2)由图可知,植树5棵的人数最多,是8人,所以,众数为5,依据植树的棵树从少到多排列,第10人与第11人都是植5棵数,所以,中位数是5;(3)==5.3(棵),240×5.3=1272(棵).答:估计这240名学生共植树1272棵.22.(6分)如图,在平面直角坐标系xOy中,直线y=﹣2x+4与x轴,y轴分别交于点A,点B.(1)求点A和点B的坐标;(2)若点P在x轴上,且S△BOP=S△AOB,求点P的坐标.(3)在y轴是否存在点M,使三角形MAB是等腰三角形,若存在,恳求出点M坐标,若不存在,请说明理由.【分析】(1)分别代入y=0,x=0,求出与之对应的x,y值,进而可得出点A,B的坐标;(2)由三角形的面积公式结合S△BOP=S△AOB,可得出OP=OA,进而可得出点P的坐标;(3)由OA,OB的长可求出AB的长,分AB=AM,BA=BM,MA=MB三种状况,利用等腰三角形的性质可求出点M的坐标.【解答】解:(1)当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);当x=0时,y=﹣2x+4=4,∴点B的坐标为(0,4).(2)∵点P在x轴上,且S△BOP=S△AOB,∴OP=OA=1,∴点P的坐标为(﹣1,0)或(1,0).(3)∵OB=4,OA=2,∴AB==2.分三种状况考虑(如图所示):①当AB=AM时,OM=OB=4,∴点M1的坐标为(0,﹣4);②当BA=BM时,BM=2,∴点M2的坐标为(0,4+2),点M3的坐标为(0,4﹣2);③当MA=MB时,设OM=a,则BM=AM=4﹣a,∴AM2=OM2+OA2,即(4﹣a)2=a2+22,∴a=,∴点M4的坐标为(0,).综上所述:在y轴上存在点M,使三角形MAB是等腰三角形,点M坐标为(0,﹣4),(0,4+2),(0,4﹣2)和(0,).23.(7分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)依据消费者需求,该网店确定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,恳求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【解答】解:(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,依据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,依据题意可得,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②依据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供配电技术课件西安工业大学
- 企业员工培训课件挖掘潜能-共同成长
- 小学六年级科学课件教科版第4课 改变运输的车轮
- 《夜归鹿门歌真用》课件
- 如何写好课题申请系列课程03逐个击破(上)
- 《促销及广告促销》课件
- 七年级道德与法治下册单元练习题及答案-初中道德与法治【人教版】道法七年级下册课件说课稿教案测试题真题
- 2022年湖北省黄冈市公开招聘警务辅助人员(辅警)笔试专项训练卷(1)含答案
- 2021年四川省成都市公开招聘警务辅助人员(辅警)笔试模拟自测题(B)卷含答案
- 2023年黑龙江省齐齐哈尔市公开招聘警务辅助人员(辅警)笔试冲刺自测题一卷含答案
- 昆明理工大学《自然语言处理》2022-2023学年第一学期期末试卷
- 陈义小学进城务工人员随迁子女入学工作制度和措施
- 部编版六年级道德与法治上册第9课《知法守法 依法维权》精美课件(第2课时)
- 小儿急腹症观察和护理
- 统编版七年级上学期期末考试语文试卷(含答案)
- 《长江电力财务分析》课件
- 2023年中国铁路武汉局集团有限公司招聘大专(高职)学历笔试真题
- 大学生职业规划大赛成长赛道
- 中考英语复习听说模拟训练(一)课件
- 公立医院创新管理薪酬激励方案
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
评论
0/150
提交评论