湖南省长沙市一中开福中学2021-2022学年高考数学全真模拟密押卷含解析_第1页
湖南省长沙市一中开福中学2021-2022学年高考数学全真模拟密押卷含解析_第2页
湖南省长沙市一中开福中学2021-2022学年高考数学全真模拟密押卷含解析_第3页
湖南省长沙市一中开福中学2021-2022学年高考数学全真模拟密押卷含解析_第4页
湖南省长沙市一中开福中学2021-2022学年高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c2.抛物线的准线方程是,则实数()A. B. C. D.3.已知复数是正实数,则实数的值为()A. B. C. D.4.设函数(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为()A. B. C. D.5.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-26.已知向量,,则向量与的夹角为()A. B. C. D.7.已知a>b>0,c>1,则下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.8.已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为()A. B. C. D.9.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.210.设复数z=,则|z|=()A. B. C. D.11.设,,则的值为()A. B.C. D.12.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.平行四边形中,,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为________.14.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)15.记数列的前项和为,已知,且.若,则实数的取值范围为________.16.观察下列式子,,,,……,根据上述规律,第个不等式应该为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)[选修4-4:极坐标与参数方程]在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值18.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)证明:19.(12分)设函数.(1)当时,求不等式的解集;(2)若存在,使得不等式对一切恒成立,求实数的取值范围.20.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.(1)证明:数列是等差数列;(2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有.21.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.22.(10分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

利用指数函数、对数函数的单调性直接求解.【详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.2.C【解析】

根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.3.C【解析】

将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.4.D【解析】

先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,,所以函数在时单调递减,由选项知,,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.5.C【解析】

利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.6.C【解析】

求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.7.B【解析】

根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为y=cx为增函数,且a>b,所以ca>cb,正确对C,因为y=xc为增函数,故,错误;对D,因为在为减函数,故,错误故选B.【点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题.8.D【解析】

利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.9.D【解析】

由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.【点睛】本题主要考查等比数列的性质的应用,属于基础题.10.D【解析】

先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.11.D【解析】

利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,,,,,,,,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.12.B【解析】

构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

依题意可得、、、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;【详解】解:依题意可得、、、四点共圆,所以因为,所以,,所以三角形为正三角形,则,,利用余弦定理得即,解得,则所以,当面面时,取得最大,所以的外接圆的半径,又面面,,且面面,面所以面,所以外接球的半径所以故答案为:【点睛】本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.14.【解析】

首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数.【详解】首先选派男医生中唯一的主任医师,然后从名男医生、名女医生中分别抽调2名男医生、名女医生,故选派的方法为:.故答案为.【点睛】解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).15.【解析】

根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【点睛】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.16.【解析】

根据题意,依次分析不等式的变化规律,综合可得答案.【详解】解:根据题意,对于第一个不等式,,则有,对于第二个不等式,,则有,对于第三个不等式,,则有,依此类推:第个不等式为:,故答案为.【点睛】本题考查归纳推理的应用,分析不等式的变化规律.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)的极坐标方程为.曲线的直角坐标方程为.(2)【解析】

(1)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入得,得到曲线的直角坐标方程;(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,,之后进行化一,可得到最值,此时,可求解.【详解】(1)由得,将代入得:,故曲线的极坐标方程为.由得,将代入得,故曲线的直角坐标方程为.(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,则,其中为锐角,且满足,,当时,取最大值,此时,【点睛】这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.18.(Ⅰ)最小值为;(Ⅱ)见解析【解析】

(1)根据题意构造平均值不等式,结合均值不等式可得结果;(2)利用分析法证明,结合常用不等式和均值不等式即可证明.【详解】(Ⅰ)则当且仅当,即,时,所以的最小值为.(Ⅱ)要证明:,只需证:,即证明:,由,也即证明:.因为,所以当且仅当时,有,即,当时等号成立.所以【点睛】本题考查均值不等式,分析法证明不等式,审清题意,仔细计算,属中档题.19.(Ⅰ).(Ⅱ).【解析】

(Ⅰ)时,根据绝对值不等式的定义去掉绝对值,求不等式的解集即可;(Ⅱ)不等式的解集为,等价于,求出在的最小值即可.【详解】(Ⅰ)当时,时,不等式化为,解得,即时,不等式化为,不等式恒成立,即时,不等式化为,解得,即综上所述,不等式的解集为(Ⅱ)不等式的解集为对任意恒成立当时,取得最小值为实数的取值范围是【点睛】本题考查了绝对值不等式的解法与应用问题,也考查了函数绝对值三角不等式的应用问题,属于常规题型.20.(1)见解析(2)(3)见解析【解析】

(1)令可得,即.得到,再利用通项公式和前n项和的关系求解,(2)由(1)知,.设等比数列的公比为,所以,再根据恰为与的等比中项求解,(3)由(2)得到时,,,求得,再代入证明。【详解】(1)解:令可得,即.所以.时,可得,当时,所以.显然当时,满足上式.所以.,所以数列是等差数列,(2)由(1)知,.设等比数列的公比为,所以,恰为与的等比中项,所以,解得,所以(3)时,,,而时,,,所以当时,.当时,,∴对任意,都有,【点睛】本题主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题,21.(1)的极坐标方程为;曲线的直角坐标方程.(2)【解析】

(1)消去参数,可得曲线的直角坐标方程,再利用极坐标与直角坐标的互化,即可求解.(2)解法1:设直线的倾斜角为,把直线的参数方程代入曲线的普通坐标方程,求得,再把直线的参数方程代入曲线的普通坐标方程,得,得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论