第八章 §8.5 椭 圆-2025届高中数学大一轮复习练习_第1页
第八章 §8.5 椭 圆-2025届高中数学大一轮复习练习_第2页
第八章 §8.5 椭 圆-2025届高中数学大一轮复习练习_第3页
第八章 §8.5 椭 圆-2025届高中数学大一轮复习练习_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、单项选择题1.“1<k<5”是方程“eq\f(x2,k-1)+eq\f(y2,5-k)=1表示椭圆”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件2.(2024·济南模拟)若椭圆C:eq\f(x2,m)+eq\f(y2,2)=1的离心率为eq\f(\r(6),3),则椭圆C的长轴长为()A.2eq\r(2) B.eq\f(2\r(6),3)或2eq\r(6)C.2eq\r(6) D.2eq\r(2)或2eq\r(6)3.(2022·全国甲卷)已知椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的离心率为eq\f(1,3),A1,A2分别为C的左、右顶点,B为C的上顶点.若eq\o(BA1,\s\up6(→))·eq\o(BA2,\s\up6(→))=-1,则C的方程为()A.eq\f(x2,18)+eq\f(y2,16)=1 B.eq\f(x2,9)+eq\f(y2,8)=1C.eq\f(x2,3)+eq\f(y2,2)=1 D.eq\f(x2,2)+y2=14.(2024·昆明模拟)已知椭圆C:eq\f(x2,25)+eq\f(y2,9)=1的左、右焦点分别为F1,F2,直线y=kx与椭圆C交于A,B两点,若|AB|=|F1F2|,则△ABF1的面积等于()A.18B.10C.9D.65.(2023·沈阳模拟)魏晋时期数学家刘徽(图(1))为研究球体的体积公式,创造了一个独特的立体图形“牟合方盖”,它由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上.将两个底面半径为1的圆柱分别从纵横两个方向嵌入棱长为2的正方体时(如图(2)),两圆柱公共部分形成的几何体(如图(3))即得一个“牟合方盖”,图(4)是该“牟合方盖”的直观图(图中标出的各点A,B,C,D,P,Q均在原正方体的表面上).由“牟合方盖”产生的过程可知,图(4)中的曲线PBQD为一个椭圆,则此椭圆的离心率为()A.eq\f(\r(2),2)B.eq\f(1,2)C.eq\f(\r(2),4)D.eq\f(1,4)6.(2023·陕西省安康中学模拟)已知P为椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)上一点,若C的右焦点F的坐标为(3,0),点M满足|eq\o(FM,\s\up6(→))|=1,eq\o(PM,\s\up6(→))·eq\o(FM,\s\up6(→))=0,若|eq\o(PM,\s\up6(→))|的最小值为2eq\r(2),则椭圆C的方程为()A.eq\f(x2,49)+eq\f(y2,40)=1 B.eq\f(x2,36)+eq\f(y2,27)=1C.eq\f(x2,16)+eq\f(y2,7)=1 D.eq\f(x2,25)+eq\f(y2,16)=1二、多项选择题7.(2023·长沙模拟)人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒定律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c,下列结论正确的是()A.卫星向径的取值范围是[a-c,a+c]B.卫星运行速度在近地点时最小,在远地点时最大C.卫星向径的最小值与最大值的比值越大,椭圆轨道越圆D.卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间8.已知椭圆eq\f(x2,4)+eq\f(y2,2)=1的左、右焦点分别为F1,F2,点P在椭圆上,且不与椭圆的左、右顶点重合,则下列关于△PF1F2的说法正确的有()A.△PF1F2的周长为4+2eq\r(2)B.当∠PF1F2=90°时,|PF1|=2C.当∠F1PF2=60°时,△PF1F2的面积为eq\f(4\r(3),3)D.椭圆上有且仅有6个点P,使得△PF1F2为直角三角形三、填空题9.已知F1(-2,0),F2(2,0)是椭圆C的焦点,过F2且垂直于x轴的直线交椭圆C于A,B两点,且|AB|=6,则椭圆C的方程为________________.10.椭圆eq\f(x2,m2+1)+eq\f(y2,m2)=1(m>0)的两个焦点分别为F1,F2,与y轴的一个交点为A,若∠F1AF2=eq\f(π,3),则m=________.11.已知一个离心率为eq\f(1,2),长轴长为4的椭圆,其两个焦点分别为F1,F2,在椭圆上存在一点P,使得∠F1PF2=60°,设△PF1F2的内切圆半径为r,则r的值为________.12.(2023·潍坊模拟)如图,菱形架ABCD是一种作图工具,由四根长度均为4的直杆用铰链首尾连接而成.已知A,C可在带滑槽的直杆l上滑动;另一根带滑槽的直杆DH长度为4,且一端记为H,另一端用铰链连接在D处,上述两根带滑槽直杆的交点P处有一栓子(可在带滑槽的直杆上滑动).若将H,B固定在桌面上,且两点之间距离为2,转动杆HD,则点P到点B距离的最大值为________.四、解答题13.(2024·西安模拟)已知椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),过F2作垂直于x轴的直线l交椭圆于A,B两点,且满足|AF2|=eq\f(\r(3),6)c.(1)求椭圆C的离心率;(2)M,N是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MP,NP分别与x轴相交于R,Q两点,O为坐标原点,若|OR|·|OQ|=4,求椭圆C的方程.14.在平面直角坐标系中,点B与点Aeq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(3,2)))关于原点对称,P是动点,且直线AP与BP的斜率之积等于-eq\f(3,4).(1)求动点P的轨迹方程,并注明x的取值范围;(2)设直线AP与BP分别与直线x=3交于M,N,问是否存在点P使得△PAB与△PMN面积相等?若存在,求出点P的坐标;若不存在,说明理由.15.(2023·衡阳联考)已知椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,过F1作直线l与椭圆C相交于M,N两点,∠MF2N=90°,且4|F2N|=3|F2M|,则椭圆的离心率为()A.eq\f(1,3)B.eq\f(1,2)C.eq\f(\r(3),3)D.eq\f(\r(5),5)16.(2024·呼和浩特模拟)已知点P是椭圆eq\f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论