版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征[学习目标]1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征.2.能运用棱柱、棱锥、棱台的结构特征来判断、描述现实生活中的实物模型.[知识链接]观察下列图片,你知道这些图片所表示的物体在几何中分别叫什么名称吗?答(1)、(8)为圆柱;(2)为长方体;(3)、(6)为圆锥;(4)、(10)为圆台;(5)、(7)、(9)为棱柱;(11)、(12)为球;(13)、(16)为棱台;(14)、(15)为棱锥.[预习导引]1.空间几何体(1)概念:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.(2)多面体与旋转体多面体:由若干个平面多边形围成的几何体叫做多面体(如图),围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.2.几种常见的多面体多面体定义图形及表示相关概念棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.如图可记作:棱柱ABCDEFA′B′C′D′E′F′底面(底):两个互相平行的面.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与底面的公共顶点.棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.如图可记作,棱锥SABCD底面(底):多边形面.侧面:有公共顶点的各个三角形面.侧棱:相邻侧面的公共边.顶点:各侧面的公共顶点.棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台.如图可记作:棱台ABCDA′B′C′D′上底面:原棱锥的截面.下底面:原棱锥的底面.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.要点一棱柱的结构特征例1下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确的序号是________.答案(3)(4)解析(1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).规律方法棱柱的结构特征:(1)两个面互相平行;(2)其余各面是四边形;(3)相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.跟踪演练1下列关于棱柱的说法错误的是()A.所有的棱柱两个底面都平行B.所有的棱柱一定有两个面互相平行,其余各面每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱D.棱柱至少有五个面答案C解析对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是平行四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱,所以C错误.要点二棱锥、棱台的结构特征例2下列关于棱锥、棱台的说法:(1)棱台的侧面一定不会是平行四边形;(2)棱锥的侧面只能是三角形;(3)由四个面围成的封闭图形只能是三棱锥;(4)棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.答案(1)(2)(3)解析(1)正确,棱台的侧面一定是梯形,而不是平行四边形;(2)正确,由棱锥的定义知棱锥的侧面只能是三角形;(3)正确,由四个面围成的封闭图形只能是三棱锥;(4)错误,如图所示四棱锥被平面截成的两部分都是棱锥.规律方法判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点跟踪演练2棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点答案C解析由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.要点三多面体的表面展开图例3画出如图所示的几何体的表面展开图.解表面展开图如图所示:规律方法多面体表面展开图问题的解题策略:(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.跟踪演练3一个无盖的正方体盒子的平面展开图如图,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC=________答案60°解析将平面图形翻折,折成空间图形,如图.1.三棱锥的四个面中可以作为底面的有()A.1个B.2个C.3个D.4个答案D解析由于三棱锥的每一个面均可作为底面,应选D.2.棱柱的侧面都是()A.三角形B.四边形C.五边形D.矩形答案B解析由棱柱的性质可知,棱柱的侧面都是四边形.3.如图所示,不是正四面体(各棱长都相等的三棱锥)的展开图的是()A.①③B.②④C.③④D.①②答案C解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.4.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).答案①③④⑥⑤解析结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.5.如图,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是________.答案四棱柱解析由于倾斜角度较小,所以倾斜后水槽中水形成的几何体的形状应为四棱柱.1.棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).2.(1)各种棱柱之间的关系①棱柱的分类棱柱eq\b\lc\{\rc\(\a\vs4\al\co1(直棱柱\b\lc\{\rc\(\a\vs4\al\co1(正棱柱,一般的直棱柱)),斜棱柱))②常见的几种四棱柱之间的转化关系(2)棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:名称底面侧面侧棱高平行于底面的截面棱柱斜棱柱平行且全等的两个多边形平行四边形平行且相等与底面全等直棱柱平行且全等的两个多边形矩形平行、相等且垂直于底面等于侧棱与底面全等正棱柱平行且全等的两个正多边形全等的矩形平行、相等且垂直于底面等于侧棱与底面全等棱锥正棱锥一个正多边形全等的等腰三角形有一个公共顶点且相等过底面中心与底面相似其他棱锥一个多边形三角形有一个公共顶点与底面相似棱台正棱台平行且相似的两个正多边形全等的等腰梯形相等且延长后交于一点与底面相似其他棱台平行且相似的两个多边形梯形延长后交于一点与底面相似一、基础达标1.在棱柱中满足()A.只有两个面平行B.所有面都平行C.所有面都是平行四边形D.两底面平行,且各侧棱也相互平行答案D解析由棱柱的定义可得只有D成立.2.四棱柱有几条侧棱,几个顶点()A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点答案C解析四棱柱有四条侧棱、八个顶点(可以结合正方体观察求得).3.下列说法中,正确的是()A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱台的侧棱都相等,侧面都是全等的平行四边形答案A4.观察如图所示的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台答案B解析结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.5.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为()答案A解析两个eq\x(☆)不能并列相邻,B、D错误;两个eq\x(※)不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.6.下列说法正确的有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.答案①②④⑤解析棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然对.因而正确的有①②④⑤.7.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?解这个几何体是由两个同底面的四棱锥组合而成的八面体.有8个面,都是全等的正三角形;有6个顶点;有12条棱.二、能力提升8.在正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20B.15C.12D.10答案D解析正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,5个平面共可得到10条对角线,故选D.9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.答案①③④⑤解析在正方体ABCD-A1B1C1D1上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是:①矩形,如四边形ACC1A1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A-A1BD;④每个面都是等边三角形的四面体,如A-CB1D1;⑤每个面都是直角三角形的四面体,如A-A1DC,所以填①③④⑤10.如图,M是棱长为2cm的正方体ABCDA1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________cm.答案eq\r(13)解析由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2cm,3cm,故两点之间的距离是eq\r(13)cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是eq\r(17)cm.故沿正方体表面从点A到点M的最短路程是eq\r(13)cm.11.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?解(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=eq\f(1,2)a2,S△DPF=S△DPE=eq\f(1,2)×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-eq\f(1,2)a2-a2-a2=eq\f(3,2)a2.三、探究与创新12.长方体ABCDA1B1C1D1(如图所示)中,AB=3,BC=4,A1A=5,现有一甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.解把长方体的部分面展开,如图所示.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为eq\r(90)、eq\r(7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿夏季健康饮食主题活动
- 入厂员工安全培训
- 3.2海水的性质(第1课时)(导学案)高一地理同步高效课堂(人教版2019必修一)
- 山西新力惠中等10所名校高三月考卷·英语试题(新外研版教材 ) - 副本
- 江西省九江市都昌县2024-2025学年三年级上学期期中数学试题
- 2024--2025学年江苏省宿迁市沭阳县广宇学校八年级(上)第一次月考数学试卷(含答案)
- 河北省衡水市武强中学2024-2025学年高三上学期期中考试生物试题 含解析
- 高中语文第17课原毁课件粤教版选修唐宋散文蚜
- 高中物理第四章电磁波及其应用第一节电磁波的发现课件新人教版选修1-
- 高中语文第3课老人与海课件5新人教版必修
- 六年级上册《书法练习指导》教案
- 中心静脉导管(CVC)维护
- 《财务共享实务》课程期末考试题库及答案
- 医疗安全典型案例警示教育
- 幼儿园清算审计报告
- itop运维综合管理平台使用手册要点
- 河北张家口市商业银行2023年微贷客户经理招聘(60人)考试参考题库含答案详解
- 妇科常用专科用药
- 健康课大班《良好的坐姿》教案7
- 中医医院医疗质量考核标准实施细则
- 建筑结构试验课件第七章结构动力特性试验
评论
0/150
提交评论