




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为()A. B. C. D.2.若复数是纯虚数,则实数的值为()A.或 B. C. D.或3.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A. B. C. D.4.a为正实数,i为虚数单位,,则a=()A.2 B. C. D.15.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为()A. B. C. D.6.已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则()A. B. C. D.7.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③8.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有()种.A.408 B.120 C.156 D.2409.集合,,则()A. B. C. D.10.一个几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.8411.若P是的充分不必要条件,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在菱形ABCD中,AB=3,,E,F分别为BC,CD上的点,,若线段EF上存在一点M,使得,则____________,____________.(本题第1空2分,第2空3分)14.函数的定义域是__________.15.某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有________种.16.已知,则_____。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且,,(1)若分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值,求二面角的余弦值.18.(12分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.19.(12分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.20.(12分)如图,在直角中,,,,点在线段上.(1)若,求的长;(2)点是线段上一点,,且,求的值.21.(12分)已知等差数列{an}的前n项和为Sn,且(1)求数列{a(2)求数列{1Sn}的前22.(10分)已知a>0,证明:1.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.2.C【解析】试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.考点:纯虚数3.A【解析】
列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.4.B【解析】
,选B.5.B【解析】
根据程序框图列举出程序的每一步,即可得出输出结果.【详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.6.A【解析】
画出函数的图像,函数对称轴方程为,由图可得与关于对称,即得解.【详解】函数的图像如图,对称轴方程为,,又,由图可得与关于对称,故选:A【点睛】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.7.C【解析】
根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.8.A【解析】
利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种),当“射”和“御”两门课程相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:.【点睛】本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题.9.A【解析】
解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A.【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.10.B【解析】
画出几何体的直观图,计算表面积得到答案.【详解】该几何体的直观图如图所示:故.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.11.B【解析】
试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题12.D【解析】
由得,分别算出和的值,从而得到的值.【详解】∵,∴,∴,当时,,∴,当时,,∴,∴,故选:D.【点睛】本小题主要考查对数运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据题意,设,则,所以,解得,所以,从而有.14.【解析】由,得,所以,所以原函数定义域为,故答案为.15.156【解析】
先考虑每班安排的老师人数,然后计算出对应的方案数,再考虑刘老师和王老师在同一班级的方案数,两者作差即可得到不同安排的方案数.【详解】安排6名老师到4个班则每班老师人数为1,1,2,2,共有种,刘老师和王老师分配到一个班,共有种,所以种.故答案为:.【点睛】本题考查排列组合的综合应用,难度一般.对于分组的问题,首先确定每组的数量,对于其中特殊元素,可通过“正难则反”的思想进行分析.16.【解析】
由已知求,再利用和角正切公式,求得,【详解】因为所以cos因此.【点睛】本题考查了同角三角函数基本关系式与和角的正切公式。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】试题分析:(1)第(1)问,转化成证明平面,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余弦值.试题解析:(1)连接,因为四边形为菱形,所以.因为平面平面,平面平面,平面,,所以平面.又平面,所以.因为,所以.因为,所以平面.因为分别为,的中点,所以,所以平面(2)设,由(1)得平面.由,,得,.过点作,与的延长线交于点,取的中点,连接,,如图所示,又,所以为等边三角形,所以,又平面平面,平面平面,平面,故平面.因为为平行四边形,所以,所以平面.又因为,所以平面.因为,所以平面平面.由(1),得平面,所以平面,所以.因为,所以平面,所以是与平面所成角.因为,,所以平面,平面,因为,所以平面平面.所以,,解得.在梯形中,易证,分别以,,的正方向为轴,轴,轴的正方向建立空间直角坐标系.则,,,,,,由,及,得,所以,,.设平面的一个法向量为,由得令,得m=(3,1,2)设平面的一个法向量为,由得令,得.所以又因为二面角是钝角,所以二面角的余弦值是.18.(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)由椭圆的定义可得,周长取最大值时,线段过点,可求出,从而求出椭圆的标准方程;(Ⅱ)设直线,直线,,,,.把直线与直线的方程分别代入椭圆的方程,利用韦达定理和弦长公式求出和,根据求出的值.最后直线与直线的方程联立,求两直线的交点即得结论.【详解】(Ⅰ)设的周长为,则,当且仅当线段过点时“”成立.,,又,,椭圆的标准方程为.(Ⅱ)若直线的斜率不存在,则直线的斜率也不存在,这与直线与直线相交于点矛盾,所以直线的斜率存在.设,,,,,.将直线的方程代入椭圆方程得:.,,.同理,.由得,此时.直线,联立直线与直线的方程得,即点在定直线.【点睛】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的逻辑推理能力和运算能力,属于难题.19.(1);(2)4【解析】
(1)根据已知用二倍角余弦求出,进而求出,利用正弦定理,即可求解;(2)由边角,利用余弦定理结合基本不等式,求出的最大值,即可求出结论.【详解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,当且仅当时,的面积有最大值4.【点睛】本题考查正弦定理、余弦定理、三角恒等变换解三角形,应用基本不等式求最值,属于基础题.20.(1)3;(2).【解析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程组即可.【详解】(1)在中,已知,,,由正弦定理,得,解得.(2)因为,所以,解得.在中,由余弦定理得,,即,,故.【点睛】本题考查正余弦定理在解三角形中的应用,考查学生的计算能力,是一道中档题.21.(1)an=2n【解析】
(1)先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果.(2)利用裂项相消法求出数列的和.【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 监理工程师的专业技能提升与继续教育考核试卷
- 水果产品采购协议
- 有线电视传输网络工程技术考核试卷
- 听见你的心心理健康教育
- 空调器热泵空调技术进展考核试卷
- 耐火土石矿山环境保护与矿山环境保护法规完善考核试卷
- 小儿大面积烧伤的护理
- 毛皮制品的智能制造技术考核试卷
- 畜牧业职业培训与技能鉴定体系考核试卷
- 整车生产中的非金属成型工艺考核试卷
- 2025年吉林省民航机场集团长白山机场公司招聘笔试参考题库附带答案详解
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 波形梁钢护栏检测记录表
- 大田作物生产技术标
- 数学命题教学设计课件
- 叶芝《当你老了》赏析课件上课讲义
- 护士角色的转换与适应
- 小学后进生转化记录表4篇-后进生转化
- 危险化学品生产经营企业安全知识培训
- 混凝土构件之梁配筋计算表格(自动版)
- 自制饮品操作流程
评论
0/150
提交评论