安徽省池州一中2021-2022学年高三下学期第六次检测数学试卷含解析_第1页
安徽省池州一中2021-2022学年高三下学期第六次检测数学试卷含解析_第2页
安徽省池州一中2021-2022学年高三下学期第六次检测数学试卷含解析_第3页
安徽省池州一中2021-2022学年高三下学期第六次检测数学试卷含解析_第4页
安徽省池州一中2021-2022学年高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e) B.C. D.(0,1)2.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.3.设,则()A. B. C. D.4.已知向量与的夹角为,,,则()A. B.0 C.0或 D.5.设,则(

)A.10 B.11 C.12 D.136.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.27.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.8.已知抛物线经过点,焦点为,则直线的斜率为()A. B. C. D.9.如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为()A. B. C. D.10.已知函数满足,当时,,则()A.或 B.或C.或 D.或11.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣1212.ΔABC中,如果lgcosA=lgsinA.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形二、填空题:本题共4小题,每小题5分,共20分。13.若函数的图像与直线的三个相邻交点的横坐标分别是,,,则实数的值为________.14.假设10公里长跑,甲跑出优秀的概率为,乙跑出优秀的概率为,丙跑出优秀的概率为,则甲、乙、丙三人同时参加10公里长跑,刚好有2人跑出优秀的概率为________.15.若曲线(其中常数)在点处的切线的斜率为1,则________.16.已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,,则球的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.18.(12分)已知函数,.(1)当时,求不等式的解集;(2)若函数的图象与轴恰好围成一个直角三角形,求的值.19.(12分)已知正实数满足.(1)求的最小值.(2)证明:20.(12分)已知椭圆的长轴长为,离心率(1)求椭圆的方程;(2)设分别为椭圆与轴正半轴和轴正半轴的交点,是椭圆上在第一象限的一点,直线与轴交于点,直线与轴交于点,问与面积之差是否为定值?说明理由.21.(12分)已知的内角、、的对边分别为、、,满足.有三个条件:①;②;③.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.22.(10分)已知数列满足,且,,成等比数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a>2,令t,则f(x)=a⇔⇔⇔⇔.记g(t).当t<2时,g(t)=2ln(﹣t)(t)单调递减,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有两个不等于2的不等根.则⇔,记h(t)(t>2且t≠2),则h′(t).令φ(t),则φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,则h(t)在(2,2)上单调递增,在(2,+∞)上单调递减.由,可得,即a<2.∴实数a的取值范围是(2,2).故选:D.【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.2.D【解析】

由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.3.D【解析】

结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【详解】由,即,又,即,,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.4.B【解析】

由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【详解】由向量与的夹角为,得,所以,又,,,,所以,解得.故选:B【点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.5.B【解析】

根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值.【详解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故选:B.【点睛】本题主要考查了分段函数中求函数的值,属于基础题.6.C【解析】

首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.7.C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.8.A【解析】

先求出,再求焦点坐标,最后求的斜率【详解】解:抛物线经过点,,,,故选:A【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.9.B【解析】

根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积.【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B.【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题.10.C【解析】

简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.11.D【解析】

分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果.【详解】设,联立则,因为直线经过C的焦点,所以.同理可得,所以故选:D.【点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。12.B【解析】

化简得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,结合0<A<π,可求A=π【详解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故选:B【点睛】本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.4【解析】

由题可分析函数与的三个相邻交点中不相邻的两个交点距离为,即,进而求解即可【详解】由题意得函数的最小正周期,解得故答案为:4【点睛】本题考查正弦型函数周期的应用,考查求正弦型函数中的14.【解析】

分跑出优秀的人为:甲、乙和甲、丙和乙、丙三种情况分别计算再求和即可.【详解】刚好有2人跑出优秀有三种情况:其一是只有甲、乙两人跑出优秀的概率为;其二是只有甲、丙两人跑出优秀的概率为;其三是只有乙、丙两人跑出优秀的概率为,三种情况相加得.即刚好有2人跑出优秀的概率为.故答案为:【点睛】本题主要考查了分类方法求解事件概率的问题,属于基础题.15.【解析】

利用导数的几何意义,由解方程即可.【详解】由已知,,所以,解得.故答案为:.【点睛】本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.16.【解析】

由题意可得三棱锥的三条侧棱两两垂直,则它的外接球就是棱长为的正方体的外接球,求出正方体的对角线的长,就是球的直径,然后求出球的体积.【详解】解:因为,为正三角形,所以,因为,所以三棱锥的三条侧棱两两垂直,所以它的外接球就是棱长为的正方体的外接球,因为正方体的对角线长为,所以其外接球的半径为,所以球的体积为故答案为:【点睛】此题考查球的体积,几何体的外接球,考查空间想象能力,计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)【解析】

(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于是的中点,所以,从而可证得结论;(2)由于在中,,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.【详解】(1)由,所以平面四边形为直角梯形,设,因为.所以在中,,则,又,所以,由,所以为等边三角形,又是的中点,所以,又平面,则有平面,而平面,故平面平面.(2)解法一:在中,,取中点,所以,由(1)可知平面平面,平面平面,所以平面,以为坐标原点,方向为轴方向,建立如图所示的空间直角坐标系,则,,设平面的法向量,由得取,则设直线与平面所成角大小为,则,故直线与平面所成角的正弦值为.解法二:在中,,取中点,所以,由(1)可知平面平面,平面平面,所以平面,过作于,连,则由平面平面,所以,又,则平面,又平面所以,在中,,所以,设到平面的距离为,由,即,即,可得,设直线与平面所成角大小为,则.故直线与平面所成角的正弦值为.【点睛】此题考查的是立体几何中的证明面面垂直和求线面角,考查学生的转化思想和计算能力,属于中档题.18.(1)(2)【解析】

(1)当时,,由可得,(所以,解得,所以不等式的解集为.(2)由题可得,因为函数的图象与轴恰好围成一个直角三角形,所以,解得,当时,,函数的图象与轴没有交点,不符合题意;当时,,函数的图象与轴恰好围成一个直角三角形,符合题意.综上,可得.19.(1);(2)见解析【解析】

(1)利用乘“1”法,结合基本不等式求得结果.(2)直接利用基本不等式及乘“1”法,证明即可.【详解】(1)因为,所以因为,所以(当且仅当,即时等号成立),所以(2)证明:因为,所以故(当且仅当时,等号成立)【点睛】本题考查了基本不等式的应用,考查了乘“1”法的技巧,考查了推理论证能力,属于中档题.20.(1)(2)是定值,详见解析【解析】

(1)根据长轴长为,离心率,则有求解.(2)设,则,直线,令得,,则,直线,令,得,则,再根据求解.【详解】(1)依题意得,解得,则椭圆的方程.(2)设,则,直线,令得,,则,直线,令,得,则,.【点睛】本题主要考查椭圆的方程及直线与椭圆的位置关系,还考查了平面几何知识和运算求解的能力,属于中档题.21.(1);(2).【解析】

(1)先求出角,进而可得出,则①②中有且只有一个正确,③正确,然后分①③正确和②③正确两种情况讨论,结合三角形的面积公式和余弦定理可求得的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论