




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省七市州高三(数学试题理)一模试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量服从正态分布,,()A. B. C. D.2.已知,,那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知函数,集合,,则()A. B.C. D.4.已知函数若函数在上零点最多,则实数的取值范围是()A. B. C. D.5.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则()A. B. C. D.6.已知,若方程有唯一解,则实数的取值范围是()A. B.C. D.7.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B.4月份仅有三个城市居民消费价格指数超过102C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势8.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过9.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为()A. B.2 C. D.110.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().A.6500元 B.7000元 C.7500元 D.8000元11.设,满足约束条件,若的最大值为,则的展开式中项的系数为()A.60 B.80 C.90 D.12012.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列满足公比,为其前项和,,,构成等差数列,则_______.14.设函数,当时,记最大值为,则的最小值为______.15.已知,满足不等式组,则的取值范围为________.16.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.18.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值.19.(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.20.(12分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.21.(12分)△ABC的内角的对边分别为,已知△ABC的面积为(1)求;(2)若求△ABC的周长.22.(10分)在中,角所对的边分别是,且.(1)求角的大小;(2)若,求边长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故选:B.本题考查利用正态分布密度曲线的对称性求概率,属于基础题.2.B【解析】
由,可得,解出即可判断出结论.【详解】解:因为,且.,解得.是的必要不充分条件.故选:.本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.C【解析】
分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,∴.故选C.本题主要考查了集合的基本运算,难度容易.4.D【解析】
将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.5.A【解析】
根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,∴,.即设,则∴当且仅当即时取等号,即.故选:A.本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.6.B【解析】
求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可.【详解】解:令,则,则,故,如图示:由,得,函数恒过,,由,,可得,,,若方程有唯一解,则或,即或;当即图象相切时,根据,,解得舍去),则的范围是,故选:.本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题.7.D【解析】
采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D本题考查图表的认识,审清题意,细心观察,属基础题.8.D【解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D本题考查条形图,考查基本分析求解能力,属基础题.9.C【解析】
根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解.【详解】双曲线的离心率,则,,解得,所以焦点坐标为,所以,则双曲线渐近线方程为,即,不妨取右焦点,则由点到直线距离公式可得,故选:C.本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.10.D【解析】
设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.【详解】设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.故选D.本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.11.B【解析】
画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到项的系数为:.故选:.本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.12.B【解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13.0【解析】
利用等差中项以及等比数列的前项和公式即可求解.【详解】由,,是等差数列可知因为,所以,故答案为:0本题考查了等差中项的应用、等比数列的前项和公式,需熟记公式,属于基础题.14.【解析】
易知,设,,利用绝对值不等式的性质即可得解.【详解】,设,,令,当时,,所以单调递减令,当时,,所以单调递增所以当时,,,则则,即故答案为:.本题考查函数最值的求法,考查绝对值不等式的性质,考查转化思想及逻辑推理能力,属于难题.15.【解析】
画出不等式组表示的平面区域如下图中阴影部分所示,易知在点处取得最小值,即,所以由图可知的取值范围为.16.【解析】
建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,,则,则,当时,,则单调递减,当时,,则单调递增,所以当时,最短,此时.故答案为:本题考查导数的实际应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2).【解析】
(1)根据,由向量,的坐标直接计算即得;(2)先求出,再根据向量平行的坐标关系解得.【详解】(1)由题,向量,,则.(2),.,,整理得,化简得,即,,,,即.本题考查平面向量的坐标运算,以及向量平行,是常考题型.18.(1)曲线的直角坐标方程为,曲线的参数方程为为参数(2)【解析】
(1)将代入,可得,所以曲线的直角坐标方程为.由可得,将,代入上式,可得,整理可得,所以曲线的参数方程为为参数.(2)由题可设,,,所以,,,所以,因为,所以,所以当,即时,l取得最大值为,所以的周长的最大值为.19.(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】
(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;;.所以的分布列为012.本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.20.(Ⅰ)(Ⅱ)1【解析】
(Ⅰ)由题,得,,解方程组,即可得到本题答案;(Ⅱ)设直线,则直线,联立,得,联立,得,由此即可得到本题答案.【详解】(Ⅰ)由题可得,即,,将点代入方程得,即,解得,所以椭圆的方程为:;(Ⅱ)由(Ⅰ)知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨区域输电线路及电站承包合同2025
- 软件公司装修合同范本版
- 平安医院建设合同范本
- 美国物业合同范本
- 酒水订货合同范本
- 卖房合同范本
- 购销合同范本中编号
- 水电劳务合同范本
- xx小学学生体质健康测试制度
- 中考语文记叙文阅读之标题理解
- 湖南省2024年对口升学考试计算机综合真题试卷
- 2024年江苏省南通市国家保安员资格考试题库国编版
- QB/T 2660-2024 化妆水(正式版)
- 《我与集体共成长》的主题班会
- 高中客观题的10大解题技法
- Q∕CR 9604-2015 高速铁路隧道工程施工技术规程
- 生产线直通率统计表
- 常用有缝钢管的规格及有关参数
- 大肠杆菌及大肠菌群计数方法
- 圆盘剪切机结构设计说明
- 好盈电调中文使用说明书
评论
0/150
提交评论