版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省“荆、荆、襄、宜四地七校高三年级320联合考试数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B.C. D.2.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为()A. B. C. D.3.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.4.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A. B. C. D.5.已知函数,则不等式的解集是()A. B. C. D.6.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是()A.椭圆 B.双曲线 C.抛物线 D.圆7.已知集合,,若AB,则实数的取值范围是()A. B. C. D.8.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.9.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.10.如图,在三棱锥中,平面,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为A.0 B. C. D.111.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()A.3个 B.4个 C.5个 D.6个12.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个 B.个 C.个 D.个二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象在点处的切线方程是,则的值等于__________.14.在中,为定长,,若的面积的最大值为,则边的长为____________.15.展开式中的系数为_______________.16.下图是一个算法的流程图,则输出的x的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格性别不合格合格总计男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.18.(12分)已知数列,其前项和为,若对于任意,,且,都有.(1)求证:数列是等差数列(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.19.(12分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.20.(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,…).记数表中位于第i行第j列的元素为,其中(,,).如:,.(1)设,,请计算,,;(2)设,,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,,对于整数t,t不属于数表M,求t的最大值.21.(12分)已知函数,,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.22.(10分)已知,,动点满足直线与直线的斜率之积为,设点的轨迹为曲线.(1)求曲线的方程;(2)若过点的直线与曲线交于,两点,过点且与直线垂直的直线与相交于点,求的最小值及此时直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据对数性质可知,再根据集合的交集运算即可求解.【详解】∵,集合,∴由交集运算可得.故选:A.本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.2.B【解析】
设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,,当时,,当且仅当时取等号,此时,,点在以为焦点的椭圆上,,由椭圆的定义得,所以椭圆的离心率,故选B.本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.3.B【解析】
由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.4.A【解析】
先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A本题主要考查复数的基本运算和几何意义,属于基础题.5.B【解析】
由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】函数,可得,时,,单调递增,∵,故不等式的解集等价于不等式的解集..∴.故选:B.本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.6.B【解析】
根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.7.D【解析】
先化简,再根据,且AB求解.【详解】因为,又因为,且AB,所以.故选:D本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.8.B【解析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.9.B【解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B本题主要考查了由平面向量线性运算的结果求参数,属于中档题.10.B【解析】
根据题意可得平面,,则即异面直线与所成的角,连接CG,在中,,易得,所以,所以,故选B.11.A【解析】试题分析:,,所以,即集合中共有3个元素,故选A.考点:集合的运算.12.C【解析】
计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球.故选:本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.14.【解析】
设,以为原点,为轴建系,则,,设,,,利用求向量模的公式,可得,根据三角形面积公式进一步求出的值即为所求.【详解】解:设,以为原点,为轴建系,则,,设,,则,即,由,可得.则.故答案为:.本题考查向量模的计算,建系是关键,属于难题.15.【解析】
把按照二项式定理展开,可得的展开式中的系数.【详解】解:,故它的展开式中的系数为,故答案为:.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.1【解析】
利用流程图,逐次进行运算,直到退出循环,得到输出值.【详解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此时14>10×1+3,输出x,故输出x的值为1.故答案为:.本题主要考查程序框图的识别,“还原现场”是求解这类问题的良方,侧重考查逻辑推理的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不需要调整安全教育方案.【解析】
(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【详解】解:(Ⅰ)由频率分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为:是否合格性别不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(Ⅱ)“不合格”和“合格”的人数比例为,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值为,.的分布列为:20151050所以.(Ⅲ)由(Ⅱ)知:.故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.本小题主要考查列联表独立性检验,考查超几何分布的分布列、数学期望和方差的计算,所以中档题.18.(1)证明见解析;(2).【解析】
(1)用数学归纳法证明即可;(2)根据条件可得,然后将用,,表示出来,根据是一个整数,可得结果.【详解】解:(1)令,,则即∴,∴成等差数列,下面用数学归纳法证明数列是等差数列,假设成等差数列,其中,公差为,令,,∴,∴,即,∴成等差数列,∴数列是等差数列;(2),,若存在正整数,使得是整数,则,设,,∴是一个整数,∴,从而又当时,有,综上,的最小值为.本题主要考查由递推关系得通项公式和等差数列的性质,关键是利用数学归纳法证明数列是等差数列,属于难题.19.(1)(2)当时,;当时,.【解析】
(1)利用数列与的关系,求得;(2)由(1)可得:,,算出公比,利用等比数列的前项和公式求出.【详解】(1)当时,,当时,,因为适合上式,所以.(2)由(1)得,,设等比数列的公比为,则,解得,当时,,当时,.本题主要考查数列与的关系、等比数列的通项公式、前项和公式等基础知识,考查运算求解能力..20.(1)(2)详见解析(3)29【解析】
(1)将,代入,可求出,,可代入求,,可求结果.(2)可求,,通过反证法证明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,,得,故.(2)证明:已知.,由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,,.得,,,.所以若,则存在,,使,若,则存在,,,使,因此,对于正整数,考虑集合,,,即,,,,,,.下面证明:集合中至少有一元素是7的倍数.反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,,其中,,.则这两个元素的差为7的倍数,即,所以,与矛盾,所以假设不成立,即原命题成立.即集合中至少有一元素是7的倍数,不妨设该元素为,,,则存在,使,,,即,,,由已证可知,若,则存在,,使,而,所以为负整数,设,则,且,,,,所以,当,时,对于整数,若,则成立.(3)下面用反证法证明:若对于整数,,则,假设命题不成立,即,且.则对于整数,存在,,,,,使成立,整理,得,又因为,,所以且是7的倍数,因为,,所以,所以矛盾,即假设不成立.所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的最大值,又因为,,,,所以.本题考查数列的综合应用,以及反证法,求最值,属于难题.21.;4;12.【解析】
由题意可知,,求导函数,方程在区间上有实数解,求出实数的取值范围;由,则,分步讨论,并利用导函数在函数的单调性的研究,得出正实数的最大值;设直线与曲线的切点为,因为,所以切线斜率,切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,求得,设,则,所以在上单调递增,最后求出实数的值.【详解】由题意可知,,则,即方程在区间上有实数解,解得;因为,则,①当,即时,恒成立,所以在上单调递增,不符题意;②当时,令,解得:,当时,,单调递增,所以不存在,使得在上的最大值为,不符题意;③当时,,解得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版船舶制造用钢管供应合同2篇
- 2024版权互换合同
- 旅行社购销合同完整版
- 小桔灯作文课件
- 化工设计-ASPEN软件:传热单元模拟
- 面积和面积单位课件
- 二零二四年度工程安装项目跨界合作与集成协议2篇
- 打印机的租赁合同格式
- 二零二四年度电子银行业务合同法律适用问题研究
- 赵师秀有约课件
- Unit 5 Fun clubs section B project 说课稿 -2024-2025学年人教版英语七年级上册
- 浙江省温州市2024-2025学年高三上学期一模英语试题 含解析
- 实验室设备安装调试及技术支持方案
- 糖尿病健康知识讲座
- 机器人感知智能 课件 第3、4章 机器人视觉感知、机器人接近觉感知
- 新概念英语第2册课文(完整版)
- 学校(幼儿园)每周食品安全排查治理报告(整学期16篇)
- 想象作文课件
- 医学英语术语解密-福建医科大学中国大学mooc课后章节答案期末考试题库2023年
- 2022年反洗钱阶段考试试题库
- 贵州省2023年12月普通高中学业水平考试数学试卷
评论
0/150
提交评论