2023-2024学年江西省上饶县七中十校联考最后数学试题含解析_第1页
2023-2024学年江西省上饶县七中十校联考最后数学试题含解析_第2页
2023-2024学年江西省上饶县七中十校联考最后数学试题含解析_第3页
2023-2024学年江西省上饶县七中十校联考最后数学试题含解析_第4页
2023-2024学年江西省上饶县七中十校联考最后数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江西省上饶县七中十校联考最后数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.计算(﹣5)﹣(﹣3)的结果等于()A.﹣8B.8C.﹣2D.22.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A. B. C. D.3.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.4.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.已知xa=2,xb=3,则x3a﹣2b等于()A. B.﹣1 C.17 D.726.下列等式正确的是()A.x3﹣x2=x B.a3÷a3=aC. D.(﹣7)4÷(﹣7)2=﹣727.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×58.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是()A.π B. C. D.9.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米10.下列运算结果正确的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a二、填空题(共7小题,每小题3分,满分21分)11.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.12.用科学计数器计算:2×sin15°×cos15°=_______(结果精确到0.01).13.若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.14.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.15.不等式组的解集是▲.16.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长____cm.三、解答题(共7小题,满分69分)18.(10分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.19.(5分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线.(1)判断直线l与圆O的关系,并说明理由;(2)若的平分线BF交AD于点F,求证:;(3)在(2)的条件下,若,,求AF的长.20.(8分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.21.(10分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为,图①中m的值为;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.22.(10分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.(1)求k和b的值;(2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.23.(12分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?24.(14分)如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:1.求的值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】分析:减去一个数,等于加上这个数的相反数.依此计算即可求解.详解:(-5)-(-3)=-1.故选:C.点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2、D【解析】根据“左加右减、上加下减”的原则,将抛物线向左平移1个单位所得直线解析式为:;再向下平移3个单位为:.故选D.3、B【解析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.4、A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得:,

计算得出:n=20,

故选A.

点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.5、A【解析】∵xa=2,xb=3,∴x3a−2b=(xa)3÷(xb)2=8÷9=,故选A.6、C【解析】

直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.【详解】解:A、x3-x2,无法计算,故此选项错误;B、a3÷a3=1,故此选项错误;C、(-2)2÷(-2)3=-,正确;D、(-7)4÷(-7)2=72,故此选项错误;故选C.【点睛】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.7、D【解析】试题分析:由题意得;如图知;矩形的长="7+2x"宽=5+2x∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.8、B【解析】

连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴的长=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.9、A【解析】

作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10、C【解析】选项A,3a2-a2=2a2;选项B,a2·a3=a5;选项C,(-a2)3=-a6;选项D,a2÷a2=1.正确的只有选项C,故选C.二、填空题(共7小题,每小题3分,满分21分)11、先将图2以点A为旋转中心逆时针旋转,再将旋转后的图形向左平移5个单位.【解析】

变换图形2,可先旋转,然后平移与图2拼成一个矩形.【详解】先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12、0.50【解析】

直接使用科学计算器计算即可,结果需保留二位有效数字.【详解】用科学计算器计算得0.5,故填0.50,【点睛】此题主要考查科学计算器的使用,注意结果保留二位有效数字.13、且【解析】试题解析:∵一元二次方程有两个不相等的实数根,∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程方程有两个不相等的实数根时:14、(1,0)【解析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时的周长最小.详解:如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周长最小,∵在矩形OACB中,OA=3,OB=4,D为OB的中点,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题,坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.15、﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.16、1【解析】设点P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣1(不合题意舍去),∴点P(1,1),∴1=,解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键.17、13【解析】试题解析:因为正方形AECF的面积为50cm2,所以因为菱形ABCD的面积为120cm2,所以所以菱形的边长故答案为13.三、解答题(共7小题,满分69分)18、【解析】

过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,

∵房子后坡度AB与前坡度AC相等,

∴∠BAD=∠CAE,

∵∠BAC=120°,

∴∠BAD=∠CAE=30°,

在直角△ABD中,AB=4米,

∴BD=2米,

在直角△ACE中,AC=6米,

∴CE=3米,

∴a-b=1米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.19、(1)直线l与相切,见解析;(2)见解析;(3)AF=.【解析】

连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此可证明直线l与相切;先由角平分线的定义可知,然后再证明,于是可得到,最后依据等角对等边证明即可;先求得BE的长,然后证明∽,由相似三角形的性质可求得AE的长,于是可得到AF的长.【详解】直线l与相切.理由:如图1所示:连接OE.平分,.,.,.直线l与相切.平分,.又,.又,..由得.,,∽.,即,解得;..故答案为:(1)直线l与相切,见解析;(2)见解析;(3)AF=.【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得是解题的关键.20、证明见解析.【解析】试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考点:1.全等三角形的判定与性质;2.平行四边形的性质.21、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】

(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:=50(人),∵×100=31%,∴图①中m的值为31.故答案为50、31;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,∴这组数据的中位数是3;由条形统计图可得=3.1,∴这组数据的平均数是3.1.(Ⅲ)1500×18%=410(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直线经过点,可得.由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;(3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P.则EE′⊥AB,P为EE′的中点,列方程组,求解即可得到a的值,进而得到答案.详解:(1)由直线经过点,可得.由抛物线的对称轴是直线,可得.∵直线与x轴、y轴分别相交于点、,∴点的坐标是,点的坐标是.∵抛物线的顶点是点,∴点的坐标是.∵点是轴上一点,∴设点的坐标是.∵△BCG与△BCD相似,又由题意知,,∴△BCG与△相似有两种可能情况:①如果,那么,解得,∴点的坐标是.②如果,那么,解得,∴点的坐标是.综上所述:符合要求的点有两个,其坐标分别是和.(3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P,则EE′⊥AB,P为EE′的中点,∴,整理得:,∴(a-1)(a+1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论