版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合的子集的个数是()A.2 B.3 C.4 D.82.下列结论中正确的个数是()①已知函数是一次函数,若数列通项公式为,则该数列是等差数列;②若直线上有两个不同的点到平面的距离相等,则;③在中,“”是“”的必要不充分条件;④若,则的最大值为2.A.1 B.2 C.3 D.03.若点x,y位于由曲线x=y-2+1与x=3围成的封闭区域内(包括边界),则A.-3,1 B.-3,5 C.-∞,-34.若,,,点C在AB上,且,设,则的值为()A. B. C. D.5.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关6.在中,,,,若,则实数()A. B. C. D.7.已知,则“直线与直线垂直”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.设等差数列的前n项和为,若,则()A. B. C.7 D.29.函数在的图象大致为A. B.C. D.10.若函数函数只有1个零点,则的取值范围是()A. B. C. D.11.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里12.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55 B.500 C.505 D.5050二、填空题:本题共4小题,每小题5分,共20分。13.设满足约束条件,则的取值范围为__________.14.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,如图所示的框图给出了利用秦九韶算法求多项式值的一个实例,若输入,的值分別为4,5,则输出的值为______.15.若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为__________.16.已知数列满足,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值.18.(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.19.(12分)在平面直角坐标系xOy中,椭圆C:x2a2(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且ON=62OM,求OB的长;②若原点O到直线l的距离为1,并且20.(12分)在平面直角坐标系中,,,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.21.(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.22.(10分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系中,已知平行于轴的动直线交抛物线:于点,点为的焦点.圆心不在轴上的圆与直线,,轴都相切,设的轨迹为曲线.(1)求曲线的方程;(2)若直线与曲线相切于点,过且垂直于的直线为,直线,分别与轴相交于点,.当线段的长度最小时,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.2.B【解析】
根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【详解】解:①已知函数是一次函数,若数列的通项公式为,可得为一次项系数),则该数列是等差数列,故①正确;②若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故②错误;③在中,,而余弦函数在区间上单调递减,故“”可得“”,由“”可得“”,故“”是“”的充要条件,故③错误;④若,则,所以,当且仅当时取等号,故④正确;综上可得正确的有①④共2个;故选:B【点睛】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题.3.D【解析】
画出曲线x=y-2+1与x=3围成的封闭区域,y+1x-2表示封闭区域内的点(x,y)【详解】画出曲线x=y-2+1与y+1x-2表示封闭区域内的点(x,y)和定点P(2,-1)设k=y+1x-2,结合图形可得k≥k由题意得点A,B的坐标分别为A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范围为-∞,-3故选D.【点睛】解答本题的关键有两个:一是根据数形结合的方法求解问题,即把y+1x-24.B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.5.B【解析】
根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.6.D【解析】
将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.7.B【解析】
由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【点睛】本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.8.B【解析】
根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.【详解】因为,所以,所以,所以,故选:B【点睛】本题主要考查等差数列的性质及前项和公式,属于基础题.9.A【解析】
因为,所以排除C、D.当从负方向趋近于0时,,可得.故选A.10.C【解析】
转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】有1个零点等价于与的图象有1个交点.记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得.所以切线斜率为,所以或.故选:C【点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.11.B【解析】
人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.12.C【解析】
因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,,于是.故选:C【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由题意画出可行域,转化目标函数为,数形结合即可得到的最值,即可得解.【详解】由题意画出可行域,如图:转化目标函数为,通过平移直线,数形结合可知:当直线过点A时,直线截距最大,z最小;当直线过点C时,直线截距最小,z最大.由可得,由可得,当直线过点时,;当直线过点时,,所以.故答案为:.【点睛】本题考查了简单的线性规划,考查了数形结合思想,属于基础题.14.1055【解析】
模拟执行程序框图中的程序,即可求得结果.【详解】模拟执行程序如下:,满足,,满足,,满足,,满足,,不满足,输出.故答案为:1055.【点睛】本题考查程序框图的模拟执行,属基础题.15.【解析】
依题意得,再求点到平面的距离为点到直线的距离,用公式所以即可得出答案.【详解】解:正三棱柱的所有棱长均为2,则,点到平面的距离为点到直线的距离所以,所以.故答案为:【点睛】本题考查椎体的体积公式,考查运算能力,是基础题.16.【解析】
数列满足知,数列以3为公比的等比数列,再由已知结合等比数列的性质求得的值即可.【详解】,数列是以3为公比的等比数列,又,,.故答案为:.【点睛】本题考查了等比数列定义,考查了对数的运算性质,考查了等比数列的通项公式,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)连接交于点,取中点,连结,证明平面得到答案.(Ⅱ)分别以为轴建立如图所示的空间直角坐标系,平面的法向量为,平面的法向量为,计算夹角得到答案.【详解】(Ⅰ)连接交于点,取中点,连结因为为菱形,所以.因为,所以.因为二面角为直二面角,所以平面平面,且平面平面,所以平面所以因为所以是平行四边形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知两两垂直,分别以为轴建立如图所示的空间直角坐标系.设设平面的法向量为,由,取.平面的法向量为.所以二面角余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.18.(1);(2).【解析】
(1)对范围分类整理得:,分类解不等式即可.(2)利用已知转化为“当时,”恒成立,利用绝对值不等式的性质可得:,问题得解.【详解】当时,,当时,由得,解得;当时,无解;当时,由得,解得,所以的解集为(2)的解集包含等价于在上恒成立,当时,等价于恒成立,而,∴,故满足条件的的取值范围是【点睛】本题主要考查了含绝对值不等式的解法,还考查了转化能力及绝对值不等式的性质,考查计算能力,属于中档题.19.(1)x22+y2【解析】
(1)根据椭圆的几何性质可得到a2,b2;(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域.【详解】(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以a=2又由右准线方程为x=2,得到a2解得a=2,c=1,所以所以,椭圆C的方程为x2(2)①设B(x1,y1∵ON=6因为点B,N都在椭圆上,所以x122+y12所以OB=x②由原点O到直线l的距离为1,得|m|1+k2联立直线l的方程与椭圆C的方程:y=kx+mx2设A(x1,y1OA=(1+k2)所以k△OAB的面积S==1因为S=2λ(1-λ)在[并且当λ=45时,S=225所以△OAB的面积S的范围为[10【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.20.(1).(2)的方程为.【解析】
(1)令,则,由此能求出点C的轨迹方程.(2)令,令直线,联立,得,由此利用根的判别式,韦达定理,三角形面积公式,结合已知条件能求出直线的方程。【详解】解:(1)因为,即直线的斜率分别为且,设点,则,整理得.(2)令,易知直线不与轴重合,令直线,与联立得,所以有,由,故,即,从而,解得,即。所以直线的方程为。【点睛】本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题。21.(1);(2)【解析】
(1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解;(2)将问题转化为对一切恒成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1和许多听评课记录
- 《初冬》听评课记录
- 1000吨货船课程设计
- 《数据的保存》课件
- 《专业资料库存篇》课件
- 《谁说人是理性的》课件
- 《货币和货币运动》课件
- 《全宗卷规则》课件
- 军队文职(医学检验技术)科目考试题库大全-临床化学(重点题)
- 《土木工程专业英语 第2版》 课件 Unit1 Introduction to Reinforced Concrete
- 非开挖施工技术讲稿课件
- 单绒毛膜双羊膜囊双胎2022优秀课件
- 北师大版八年级上数学竞赛试卷
- 基本公共卫生服务项目工作存在问题整改情况汇报【六篇】
- 支付宝承诺函
- 中医急救培训培训课件
- 生物化学(第二版)-电子教案(完整版)
- 组织行为学(中国人民大学)
- 《推荐一本书》(完美版)教学课件
- GB∕T 41115-2021 焊缝无损检测 超声检测 衍射时差技术(TOFD)的应用
- 《走进爱国主义教育基地》ppt
评论
0/150
提交评论