版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知f(x)=是定义在R上的奇函数,则不等式f(x-3)<f(9-x2)的解集为()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)2.已知,满足,且的最大值是最小值的4倍,则的值是()A.4 B. C. D.3.已知函数在区间上恰有四个不同的零点,则实数的取值范围是()A. B. C. D.4.记为等差数列的前项和.若,,则()A.5 B.3 C.-12 D.-135.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.6.已知为定义在上的偶函数,当时,,则()A. B. C. D.7.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.8.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则()A.在点F的运动过程中,存在EF//BC1B.在点M的运动过程中,不存在B1M⊥AEC.四面体EMAC的体积为定值D.四面体FA1C1B的体积不为定值9.设则以线段为直径的圆的方程是()A. B.C. D.10.已知集合,则元素个数为()A.1 B.2 C.3 D.411.设复数满足,则()A. B. C. D.12.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()A.400米 B.480米C.520米 D.600米二、填空题:本题共4小题,每小题5分,共20分。13.已知实数满约束条件,则的最大值为___________.14.若双曲线的两条渐近线斜率分别为,,若,则该双曲线的离心率为________.15.在中,为定长,,若的面积的最大值为,则边的长为____________.16.已知x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;;.)18.(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.19.(12分)已知数列是等差数列,前项和为,且,.(1)求.(2)设,求数列的前项和.20.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.(1)求线段长的最小值;(2)求点的轨迹方程.21.(12分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.Ⅰ求证:平面PBD;Ⅱ求证:.22.(10分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)如果对所有的≥0,都有≤,求的最小值;(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.【点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.2.D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.3.A【解析】
函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围.【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或.因为,当时,,单调递减;当时,,单调递增;所以在处取得最小值,最小值为.因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且.故选:A.【点睛】本题考查复合函数的零点.考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力.4.B【解析】
由题得,,解得,,计算可得.【详解】,,,,解得,,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.5.D【解析】
设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【详解】设,,所以,,,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.6.D【解析】
判断,利用函数的奇偶性代入计算得到答案.【详解】∵,∴.故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.7.A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.8.C【解析】
采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,//而与平面相交,故可知与平面相交,所以不存在EF//BC1B错误,如图,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由//,平面,平面所以//平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由//,平面,平面所以//平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.9.A【解析】
计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.10.B【解析】
作出两集合所表示的点的图象,可得选项.【详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.11.D【解析】
根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.12.B【解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.8【解析】
画出可行域和目标函数,根据平移计算得到答案.【详解】根据约束条件,画出可行域,图中阴影部分为可行域.又目标函数表示直线在轴上的截距,由图可知当经过点时截距最大,故的最大值为8.故答案为:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.14.2【解析】
由题得,再根据求解即可.【详解】双曲线的两条渐近线为,可令,,则,所以,解得.故答案为:2.【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.15.【解析】
设,以为原点,为轴建系,则,,设,,,利用求向量模的公式,可得,根据三角形面积公式进一步求出的值即为所求.【详解】解:设,以为原点,为轴建系,则,,设,,则,即,由,可得.则.故答案为:.【点睛】本题考查向量模的计算,建系是关键,属于难题.16.3【解析】
先根据约束条件画出可行域,再由y=2x-z表示直线在y轴上的截距最大即可得解.【详解】x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,画出可行域如图所示.目标函数z=2x-y,即平移直线y=2x-z,截距最大时即为所求.2y+1=0x-y-1=0点A(12,z在点A处有最小值:z=2×1故答案为:32【点睛】本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),,;(2)详见解析.【解析】
(1)根据频率分布表计算出平均数,进而计算方差,从而X~N(65,142),计算P(51<X<93)即可;(2)列出Y所有可能的取值,分布求出每个取值对应的概率,列出分布列,计算期望,进而可得需要的总金额.【详解】解:(1)由已知频数表得:,,由,则,而,所以,则X服从正态分布,所以;(2)显然,,所以所有Y的取值为15,30,45,60,,,,,所以Y的分布列为:Y15304560P所以,需要的总金额为:.【点睛】本题考查了利用频率分布表计算平均数,方差,考查了正态分布,考查了离散型随机变量的概率分布列和数学期望,主要考查数据分析能力和计算能力,属于中档题.18.(1);(2)见解析.【解析】
(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可.(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示,结合三角形相似,证明结论,即可.【详解】(Ⅰ)设椭圆的半焦距为,由椭圆的离心率为知,,∴椭圆的方程可设为.易求得,∴点在椭圆上,∴,解得,∴椭圆的方程为.(Ⅱ)当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由(Ⅰ)知,,,∴.当过点且与圆相切的切线斜率存在时,可设切线的方程为,,∴,即.联立直线和椭圆的方程得,∴,得.∵,∴,,∴.综上所述,圆上任意一点处的切线交椭圆于点,都有.在中,由与相似得,为定值.【点睛】本道题考查了椭圆方程的求解,考查了直线与椭圆位置关系,考查了向量的坐标运算,难度偏难.19.(1)(2)【解析】
(1)由数列是等差数列,所以,解得,又由,解得,即可求得数列的通项公式;(2)由(1)得,利用乘公比错位相减,即可求解数列的前n项和.【详解】(1)由题意,数列是等差数列,所以,又,,由,得,所以,解得,所以数列的通项公式为.(2)由(1)得,,,两式相减得,,即.【点睛】本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.20.(1)(2)【解析】
(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【详解】解曲线的方程化成直角坐标方程为即圆心,半径,曲线为过定点的直线,易知在圆内,当时,线段长最小为当点与点不重合时,设,化简得当点与点重合时,也满足上式,故点的轨迹方程为【点睛】本题考查了极坐标与普通方程的互化、直线与圆的位置关系、列方程求动点的轨迹方程,属于基础题.21.(1)见解析;(2)见解析.【解析】分析:(1)先证明,再证明FG//平面PBD.(2)先证明平面,再证明BD⊥FG.详解:证明:(1)连结PE,因为G.、F为EC和PC的中点,,又平面,平面,所以平面(II)因为菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因为平面,平面,且,平面,平面,∴BD⊥FG.点睛:(1)本题主要考查空间位置关系的证明,意在考查学生对这些基础知识的掌握水平和空间想象转化能力.(2)证明空间位置关系,一般有几何法和向量法,本题利用几何法比较方便.22.(Ⅰ)函数在上单调递减,在单调递增;(Ⅱ);(Ⅲ)证明见解析.【解析】
(Ⅰ)先求出函数f(x)的导数,通过解关于导数的不等式,从而求出函数的单调区间;(Ⅱ)设g(x)=f(x)﹣ax,先求出函数g(x)的导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中考道德与法治一轮教材复习-七年级下册-第一单元 青春时光
- 昆明理工大学津桥学院《操作系统原理》2021-2022学年第一学期期末试卷
- 古色古香的江南小镇模板
- 《企业质量管理培训》课件
- 浙江湖州特色旅游
- 九江学院《卫生毒理学》2021-2022学年第一学期期末试卷
- 老年肺炎的临床特征
- 筋膜疼痛的临床特征
- 2025年辽宁货运从业资格证摸拟考试试题答案解析
- 2025年酒泉货运从业资格证考试卷
- 西方文明通论学习通超星期末考试答案章节答案2024年
- TCSF 0089-2024 城市绿地种植和管养活动碳计量指南
- 气候可行性论证技术规范第4部分:城市轨道交通工程
- 2024年专技人员公需科目考试答
- 2024年宁波城投集团第一期内部人才市场招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024新华社招考应届高校毕业生(高频重点提升专题训练)共500题附带答案详解
- 2024年国家开放大学电大基础写作期末考试题库
- 新版工贸企业重大事故隐患-题库
- 大凉山精准脱贫智慧树知到期末考试答案章节答案2024年西昌学院
- 2023-2024学年江苏省南京师大附中树人学校八年级(上)月考英语试卷(12月份)
- 2023-2024学年甘肃省庆阳市八年级(上)期末英语试卷
评论
0/150
提交评论