版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市丰台区第十二中学高三下学期第一次半月考数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正项等比数列中,,且与的等差中项为4,则的公比是()A.1 B.2 C. D.2.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为()A. B. C.2 D.3.已知函数,则不等式的解集为()A. B. C. D.4.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.5.已知函数,.若存在,使得成立,则的最大值为()A. B.C. D.6.已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为()A. B.C. D.7.已知的部分图象如图所示,则的表达式是()A. B.C. D.8.对于任意,函数满足,且当时,函数.若,则大小关系是()A. B. C. D.9.已知函数,,若成立,则的最小值为()A.0 B.4 C. D.10.函数f(x)=2x-3A.[32C.[3211.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过12.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是()发芽所需天数1234567种子数43352210A.2 B.3 C.3.5 D.4二、填空题:本题共4小题,每小题5分,共20分。13.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.14.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.15.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.16.若曲线(其中常数)在点处的切线的斜率为1,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在斜三棱柱中,平面平面,,,,均为正三角形,E为AB的中点.(Ⅰ)证明:平面;(Ⅱ)求斜三棱柱截去三棱锥后剩余部分的体积.18.(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用.现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.19.(12分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,,,求的面积.20.(12分)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.21.(12分)已知函数.(1)若关于的不等式的整数解有且仅有一个值,当时,求不等式的解集;(2)已知,若,使得成立,求实数的取值范围.22.(10分)如图,三棱台中,侧面与侧面是全等的梯形,若,且.(Ⅰ)若,,证明:∥平面;(Ⅱ)若二面角为,求平面与平面所成的锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
设等比数列的公比为q,,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q.【详解】由题意,正项等比数列中,,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D.本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.2.C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.3.D【解析】
先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.4.D【解析】
根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.5.C【解析】
由题意可知,,由可得出,,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,,由于,则,同理可知,,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,,则,,则,构造函数,其中,则.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,.故选:C.本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.6.C【解析】
可设,根据在上为偶函数及便可得到:,可设,,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,,;若,,且,则:;在上是减函数;;;在上是增函数;所以,故选:C考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.7.D【解析】
由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,,,则,,因此,.故选:D.本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.8.A【解析】
由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.【详解】对于任意,函数满足,因为函数关于点对称,当时,是单调增函数,所以在定义域上是单调增函数.因为,所以,.故选:A.本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题..9.A【解析】
令,进而求得,再转化为函数的最值问题即可求解.【详解】∵∴(),∴,令:,,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.10.A【解析】
根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数y=2x-3解得x≥32且∴函数f(x)=2x-3+1定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数fx的定义域为a,b,则函数fgx11.D【解析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D本题考查条形图,考查基本分析求解能力,属基础题.12.C【解析】
根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为,故选:C.本题考查中位数的计算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项.【详解】由题意,.展开式通项为,由得,∴常数项为.故答案为:.本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键.14.①③④【解析】
先利用导数求得曲线在点处的切线方程,由此求得与的递推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号.【详解】∵,∴曲线在点处的切线方程为,则.∵,∴,则是首项为1,公比为的等比数列,从而,,.故所有正确结论的编号是①③④.故答案为:①③④本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题.15.【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.16.【解析】
利用导数的几何意义,由解方程即可.【详解】由已知,,所以,解得.故答案为:.本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)见解析;(Ⅱ)【解析】
(Ⅰ)要证明线面平行,需先证明线线平行,所以连接,交于点M,连接ME,证明;(Ⅱ)由题意可知点到平面ABC的距离等于点到平面ABC的距离,根据体积公式剩余部分的体积是.【详解】(Ⅰ)如图,连接,交于点M,连接ME,则.因为平面,平面,所以平面.(Ⅱ)因为平面ABC,所以点到平面ABC的距离等于点到平面ABC的距离.如图,设O是AC的中点,连接,OB.因为为正三角形,所以,又平面平面,平面平面,所以平面ABC.所以点到平面ABC的距离,故三棱锥的体积为.而斜三棱柱的体积为.所以剩余部分的体积为.本题考查证明线面平行,计算体积,意在考查推理证明,空间想象能力,计算能力,属于中档题型,一般证明线面平行的方法1.证明线线平行,则线面平行,2.证明面面平行,则线面平行,关键是证明线线平行,一般构造平行四边形,则对边平行,或是构造三角形中位线.18.(1);(2)分布列见详解,期望为;(3)余下所有零件不用检验,理由见详解.【解析】
(1)计算的频率,并且与进行比较,判断中位数落在的区间,然后根据频率的计算方法,可得结果.(2)计算位于之外的零件中随机抽取个的总数,写出所有可能取值,并计算相对应的概率,列出分布列,计算期望,可得结果.(3)计算整箱的费用,根据余下零件个数服从二项分布,可得余下零件个数的期望值,然后计算整箱检验费用与赔偿费用之和的期望值,进行比较,可得结果.【详解】(1)尺寸在的频率:尺寸在的频率:且所以可知尺寸的中位数落在假设尺寸中位数为所以所以这个零件尺寸的中位数(2)尺寸在的个数为尺寸在的个数为的所有可能取值为1,2,3,4则,,所以的分布列为(3)二等品的概率为如果对余下的零件进行检验则整箱的检验费用为(元)余下二等品的个数期望值为如果不对余下的零件进行检验,整箱检验费用与赔偿费用之和的期望值为(元)所以,所以可以不对余下的零件进行检验.本题考查频率分布直方图的应用,掌握中位数,平均数,众数的计算方法,中位数的理解应该从中位数开始左右两边的频率各为0.5,考验分析能力以及数据处理,属中档题.19.(1)最小正周期为,单调递增区间为;(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可求得该函数的单调递增区间;(2)由求得,由得出或,分两种情况讨论,结合余弦定理解三角形,进行利用三角形的面积公式可求得的面积.【详解】(1),所以,函数的最小正周期为,由得,因此,函数的单调递增区间为;(2)由,得,或,或,,,又,,即.①当时,即,则由,,得,则,此时,的面积为;②当时,则,即,则由,解得,,.综上,的面积为.本题考查正弦型函数的周期和单调区间的求解,同时也考查了三角形面积的计算,涉及余弦定理解三角形的应用,考查计算能力,属于中等题.20.(1)见解析;(2)【解析】
分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式;(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.详解:(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年电子体积修正仪市场需求规模及营销策略发展创新性研究报告
- 2024-2030年电动汽车行业市场深度调研及供需格局与投资前景研究报告
- 2024-2030年牛初乳行业十四五竞争格局分析及投资前景与战略规划研究报告
- 2024-2030年片状电容器行业市场深度分析及发展策略研究报告
- 2024-2030年煤炭钢铁行业市场发展分析与发展趋势及投资前景预测报告
- 2 《登泰山记》学案(含答案)高中语文人教统编版必修上册
- 粉刺霜项目运营指导方案
- 电动闭门器市场分析及投资价值研究报告
- 非金属制窗锁商业机会挖掘与战略布局策略研究报告
- 粉饼盒用粉饼化妆品项目运营指导方案
- Unit 4 Weekend Activities Part B(教学设计)-2024-2025学年闽教版英语五年级上册
- 2024年陕西省西安市中考地理试题卷(含答案逐题解析)
- 4、2024广西专业技术人员继续教育公需科目参考答案(99分)
- 三级动物疫病防治员职业鉴定理论考试题库-上(单选题)
- 杭州萧山国际机场控制区通行证考试题库附有答案
- 科普知识手卫生与健康
- 人教版音乐九年级上册第1单元选唱《中国军魂》教案
- 旋挖成孔灌注桩工程技术规程
- 法治教育教学教案及反思(3篇模板)
- JBT 7363-2023 滚动轴承 零件碳氮共渗 热处理技术规范 (正式版)
- 饲料加工员试题及答案
评论
0/150
提交评论