版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年重庆市彭水县第一中学高三下学期第一次阶段达标数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则 B.若且,则C.若且,则 D.若不垂直于,且,则不垂直于2.若复数满足(是虚数单位),则的虚部为()A. B. C. D.3.函数(且)的图象可能为()A. B. C. D.4.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.5.如图,四边形为正方形,延长至,使得,点在线段上运动.设,则的取值范围是()A. B. C. D.6.函数在上的最大值和最小值分别为()A.,-2 B.,-9 C.-2,-9 D.2,-27.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率A. B.C. D.8.如图,是圆的一条直径,为半圆弧的两个三等分点,则()A. B. C. D.9.在三棱锥中,,且分别是棱,的中点,下面四个结论:①;②平面;③三棱锥的体积的最大值为;④与一定不垂直.其中所有正确命题的序号是()A.①②③ B.②③④ C.①④ D.①②④10.若,则()A. B. C. D.11.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为()A.或 B.或 C.或 D.或12.函数的定义域为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,,则的值为________.14.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.15.已知数列为等差数列,数列为等比数列,满足,其中,,则的值为_______________.16.已知实数,满足约束条件,则的最大值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)18.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求曲线C的极坐标方程和直线l的直角坐标方程;(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.19.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,,求的值.20.(12分)设数阵,其中、、、.设,其中,且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、、、).表示“将经过变换得到,再将经过变换得到、,以此类推,最后将经过变换得到”,记数阵中四个数的和为.(1)若,写出经过变换后得到的数阵;(2)若,,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.21.(12分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.22.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.2.A【解析】
由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.【详解】因为,所以,所以复数的虚部为.故选A.本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.3.D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.4.A【解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.5.C【解析】
以为坐标原点,以分别为x轴,y轴建立直角坐标系,利用向量的坐标运算计算即可解决.【详解】以为坐标原点建立如图所示的直角坐标系,不妨设正方形的边长为1,则,,设,则,所以,且,故.故选:C.本题考查利用向量的坐标运算求变量的取值范围,考查学生的基本计算能力,本题的关键是建立适当的直角坐标系,是一道基础题.6.B【解析】
由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在上的最大值和最小值.【详解】依题意,,作出函数的图象如下所示;由函数图像可知,当时,有最大值,当时,有最小值.故选:B.本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.7.B【解析】
设,则,,因为,所以.若,则,所以,所以,不符合题意,所以,则,所以,所以,,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率.故选B.8.B【解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;【详解】解:连接、,,是半圆弧的两个三等分点,,且,所以四边形为棱形,.故选:B本题考查平面向量的数量积及其运算律的应用,属于基础题.9.D【解析】
①通过证明平面,证得;②通过证明,证得平面;③求得三棱锥体积的最大值,由此判断③的正确性;④利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,,又,所以平面,所以,故①正确;因为,所以平面,故②正确;当平面与平面垂直时,最大,最大值为,故③错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故④正确.故选:D本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.10.D【解析】
直接利用二倍角余弦公式与弦化切即可得到结果.【详解】∵,∴,故选D本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.11.D【解析】
设,,根据和抛物线性质得出,再根据双曲线性质得出,,最后根据余弦定理列方程得出、间的关系,从而可得出离心率.【详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,,则,为双曲线上的点,则,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故选:D.本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.12.C【解析】
函数的定义域应满足故选C.二、填空题:本题共4小题,每小题5分,共20分。13.11【解析】
由等差数列的下标和性质可得,由即可求出公差,即可求解;【详解】解:设等差数列的公差为,,又因为,解得故答案为:本题考查等差数列的通项公式及等差数列的性质的应用,属于基础题.14.【解析】
由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,,即,所以,故答案为:.该题考查的是有关动点距离的最小值问题,涉及到的知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.15.【解析】
根据题意,判断出,根据等比数列的性质可得,再令数列中的,,,根据等差数列的性质,列出等式,求出和的值即可.【详解】解:由,其中,,可得,则,令,,可得.①又令数列中的,,,根据等差数列的性质,可得,所以.②根据①②得出,.所以.故答案为.本题主要考查等差数列、等比数列的性质,属于基础题.16.【解析】
令,所求问题的最大值为,只需求出即可,作出可行域,利用几何意义即可解决.【详解】作出可行域,如图令,则,显然当直线经过时,最大,且,故的最大值为.故答案为:.本题考查线性规划中非线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)万;(Ⅱ)分布列见解析,;(Ⅲ)【解析】
(Ⅰ)根据比例关系直接计算得到答案.(Ⅱ)的可能取值为,计算概率得到分布列,再计算数学期望得到答案.(Ⅲ)英语测试成绩在70分以上的概率为,故,解得答案.【详解】(Ⅰ)样本中女生英语成绩在分以上的有人,故人数为:万人.(Ⅱ)8名男生中,测试成绩在70分以上的有人,的可能取值为:.,,.故分布列为:.(Ⅲ)英语测试成绩在70分以上的概率为,故,故.故的最小值为.本题考查了样本估计总体,分布列,数学期望,意在考查学生的计算能力和综合应用能力.18.(1):,直线:;(2).【解析】
(1)由消参法把参数方程化为普通方程,再由公式进行直角坐标方程与极坐标方程的互化;(2)由极径的定义可直接把代入曲线和直线的极坐标方程,求出极径,把比值化为的三角函数,从而可得最大值、【详解】(1)消去参数可得曲线的普通方程是,即,代入得,即,∴曲线的极坐标方程是;由,化为直角坐标方程为.(2)设,则,,,当时,取得最大值为.本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公式可轻松自如进行极坐标方程与直角坐标方程的互化.19.(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直线参数方程的几何意义,.【详解】解:(1)由,得圆C的直角坐标方程为,即.(2)将直线l的参数方程代入圆C的直角坐标方程,得,即,设两交点A,B所对应的参数分别为,,从而,则.本题考查了极坐标方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道容易题.20.(1);(2);(3)见解析.【解析】
(1)由,能求出经过变换后得到的数阵;(2)由,,求出数阵经过变化后的矩阵,进而可求得的值;(3)分和两种情况讨论,推导出变换后数阵的第一行和第二行的数字之和,由此能证明的所有可能取值的和不超过.【详解】(1),经过变换后得到的数阵;(2)经变换后得,故;(3)若,在的所有非空子集中,含有且不含的子集共个,经过变换后第一行均变为、;含有且不含的子集共个,经过变换后第一行均变为、;同时含有和的子集共个,经过变换后第一行仍为、;不含也不含的子集共个,经过变换后第一行仍为、.所以经过变换后所有的第一行的所有数的和为.若,则的所有非空子集中,含有的子集共个,经过变换后第一行均变为、;不含有的子集共个,经过变换后第一行仍为、.所以经过变换后所有的第一行的所有数的和为.同理,经过变换后所有的第二行的所有数的和为.所以的所有可能取值的和为,又因为、、、,所以的所有可能取值的和不超过.本题考查数阵变换的求法,考查数阵中四个数的和不超过的证明,考查类比推理、数阵变换等基础知识,考查运算求解能力,综合性强,难度大.21.(1);(2)【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度不锈钢栏杆生产设备采购与技术升级合同
- 滑动门用非金属滑轨市场发展预测和趋势分析
- 纸制宠物拾便袋市场发展现状调查及供需格局分析预测报告
- 运载工具用电压调节器市场发展现状调查及供需格局分析预测报告
- 2024年度云计算服务合同数据处理规定
- 2024年度广告代理合同协议
- 2024年度中秋月饼定制采购合同
- 游泳池用充气玩具市场需求与消费特点分析
- 皮制行李标签市场需求与消费特点分析
- 2024年度劳动合同(含薪资待遇、工作时间及福利制度)
- 校园小品《我的未来不是梦》剧本
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- 2024年无人驾驶环卫行业研究报告
- 代谢组学完整版本
- 室外石材工程冬季施工方案版干挂石材冬季施工方案
- GB/T 44347-2024乡村绿化技术规程
- 第1课调查旅游意向(教学设计)四年级下册信息技术粤教版
- 《智慧旅游》课件-VR
- 2024-2025学年高中政治《人民代表大会:国家的权力机关》教学设计
- 石材供货计划措施
- 2024年江苏省扬州市中考道德与法治真题(含解析)
评论
0/150
提交评论