2024-2025学年内蒙古包头市稀土高新区二中高三年级模拟考试(三)数学试题含解析_第1页
2024-2025学年内蒙古包头市稀土高新区二中高三年级模拟考试(三)数学试题含解析_第2页
2024-2025学年内蒙古包头市稀土高新区二中高三年级模拟考试(三)数学试题含解析_第3页
2024-2025学年内蒙古包头市稀土高新区二中高三年级模拟考试(三)数学试题含解析_第4页
2024-2025学年内蒙古包头市稀土高新区二中高三年级模拟考试(三)数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年内蒙古包头市稀土高新区二中高三年级模拟考试(三)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,以下结论正确的个数为()①当时,函数的图象的对称中心为;②当时,函数在上为单调递减函数;③若函数在上不单调,则;④当时,在上的最大值为1.A.1 B.2 C.3 D.42.已知函,,则的最小值为()A. B.1 C.0 D.3.在中,为上异于,的任一点,为的中点,若,则等于()A. B. C. D.4.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A. B. C. D.5.已知复数,,则()A. B. C. D.6.若双曲线:的一条渐近线方程为,则()A. B. C. D.7.已知双曲线x2a2-y2b2=1(a>0,b>0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐近线上的一点,O为坐标原点,满足|OA|=A.2 B.2 C.2338.已知复数,其中,,是虚数单位,则()A. B. C. D.9.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=()A. B. C.2 D.﹣210.不等式组表示的平面区域为,则()A., B.,C., D.,11.根据如图所示的程序框图,当输入的值为3时,输出的值等于()A.1 B. C. D.12.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知变量x,y满足约束条件x-y≤0x+2y≤34x-y≥-6,则14.在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点.若以AB为直径的圆与圆x2+(y-2)2=1相外切,且∠APB的大小恒为定值,则线段OP的长为_____.15.已知实数满足则点构成的区域的面积为____,的最大值为_________16.设实数x,y满足,则点表示的区域面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.19.(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.20.(12分)已知函数.(1)当时,解关于x的不等式;(2)当时,若对任意实数,都成立,求实数的取值范围.21.(12分)在中,内角的对边分别是,已知.(1)求的值;(2)若,求的面积.22.(10分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.【详解】①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.②由题意知.因为当时,,又,所以在上恒成立,所以函数在上为单调递减函数,正确.③由题意知,当时,,此时在上为增函数,不合题意,故.令,解得.因为在上不单调,所以在上有解,需,解得,正确.④令,得.根据函数的单调性,在上的最大值只可能为或.因为,,所以最大值为64,结论错误.故选:C本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.2.B【解析】

,利用整体换元法求最小值.【详解】由已知,又,,故当,即时,.故选:B.本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题.3.A【解析】

根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,,,故选:A.本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.4.D【解析】

根据统计数据,求出频率,用以估计概率.【详解】.故选:D.本题以数学文化为背景,考查利用频率估计概率,属于基础题.5.B【解析】分析:利用的恒等式,将分子、分母同时乘以,化简整理得详解:,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.6.A【解析】

根据双曲线的渐近线列方程,解方程求得的值.【详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A本小题主要考查双曲线的渐近线,属于基础题.7.C【解析】

计算得到Ac,bca【详解】双曲线的一条渐近线方程为y=bax,A故Ac,bca,Fc,0,故Mc,故选:C.本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.8.D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.9.D【解析】

化简z=(1+2i)(1+ai)=,再根据z∈R求解.【详解】因为z=(1+2i)(1+ai)=,又因为z∈R,所以,解得a=-2.故选:D本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.10.D【解析】

根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中,,

设,则,的几何意义为直线在轴上的截距的2倍,

由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;

设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.11.C【解析】

根据程序图,当x<0时结束对x的计算,可得y值.【详解】由题x=3,x=x-2=3-1,此时x>0继续运行,x=1-2=-1<0,程序运行结束,得,故选C.本题考查程序框图,是基础题.12.B【解析】

根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.本题考查二次函数的图象及函数的零点,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.-5【解析】

画出x,y满足的可行域,当目标函数z=x-2y经过点A时,z最小,求解即可。【详解】画出x,y满足的可行域,由x+2y=34x-y=-6解得A-1,2,当目标函数z=x-2y经过点A本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想。需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得。14.【解析】分析:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),利用差角的正切公式,结合以AB为直径的圆与圆x2+(y-2)2=1相外切.且∠APB的大小恒为定值,即可求出线段OP的长.详解:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),则∵∠APB的大小恒为定值,

∴t=,∴|OP|=.故答案为点睛:本题考查圆与圆的位置关系,考查差角的正切公式,考查学生的计算能力,属于中档题.15.811【解析】

画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.本题考查简单线性规划问题,涉及区域面积的求解,属基础题.16.【解析】

先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.【详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2);(3)【解析】

(1)依题意,得,,由此能求出椭圆C的方程.(2)点与点关于轴对称,设,,设,由于点在椭圆C上,故,由,知,由此能求出圆T的方程.(3)设,则直线MP的方程为:,令,得,同理:,由此能证明为定值.【详解】(1)依题意,得,,,故椭圆C的方程为.(2)点与点关于轴对称,设,,设,由于点在椭圆C上,所以,由,则,.由于,故当时,的最小值为,所以,故,又点在圆T上,代入圆的方程得到.故圆T的方程为:(3)设,则直线MP的方程为:,令,得,同理:.故又点与点在椭圆上,故,代入上式得:,所以本题考查了椭圆的几何性质、圆的轨迹方程、直线与椭圆的位置关系中定值问题,考查了学生的计算能力,属于中档题.18.(1),;(2).【解析】

(1)在曲线的参数方程中消去参数,可得出曲线的普通方程,将曲线的极坐标方程变形为,进而可得出曲线的直角坐标方程;(2)求出点到直线的最大距离,以及直线截圆所得弦长,利用三角形的面积公式可求得面积的最大值.【详解】(1)由曲线的参数方程得,.所以,曲线的普通方程为,将曲线的极坐标方程变形为,所以,曲线的直角坐标方程为;(2)曲线是圆心为,半径为为圆,圆心到直线的距离为,所以,点到直线的最大距离为,,因此,的面积为最大值为.本题考查曲线的参数方程、极坐标方程与普通方程之间的相互转换,同时也考查了直线截圆所形成的三角形面积最值的计算,考查计算能力,属于中等题.19.(1);(2)4【解析】

(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【详解】(1)当时不等式可化为当时,不等式可化为;当时,不等式可化为;综上不等式的解集为.(2)由(1)有,,,,即而当且仅当:,即,即时等号成立∴,综上实数最大值为4.本题考查了绝对值不等式的求解与不等式的恒成立问题,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.20.(1)(2)【解析】

(1)当时,利用含有一个绝对值不等式的解法,求得不等式的解集.(2)对分成和两类,利用零点分段法去绝对值,将表示为分段函数的形式,求得的最小值,进而求得的取值范围.【详解】(1)当时,由得由得解:,得∴当时,关于的不等式的解集为(2)①当时,,所以在上是减函数,在是增函数,所以,由题设得,解得.②当时,同理求得.综上所述,的取值范围为.本小题主要考查含有一个绝对值不等式的求法,考查利用零点分段法解含有两个绝对值的不等式,属于中档题.21.(1);(2).【解析】

(1)由,利用余弦定理可得,结合可得结果;(2)由正弦定理,,利用三角形内角和定理可得,由三角形面积公式可得结果.【详解】(1)由题意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.22.(1);(2)见解析【解析】

(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;(2)法一:设直线,的方程分别为和且,,,可得,,,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,,即可得证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论