2024-2025学年江苏省淮安市四星级高中高三5月调研考试(数学试题文)试题含解析_第1页
2024-2025学年江苏省淮安市四星级高中高三5月调研考试(数学试题文)试题含解析_第2页
2024-2025学年江苏省淮安市四星级高中高三5月调研考试(数学试题文)试题含解析_第3页
2024-2025学年江苏省淮安市四星级高中高三5月调研考试(数学试题文)试题含解析_第4页
2024-2025学年江苏省淮安市四星级高中高三5月调研考试(数学试题文)试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年江苏省淮安市四星级高中高三5月调研考试(数学试题文)试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点在双曲线上,则该双曲线的离心率为()A. B. C. D.2.天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为()A. B. C. D.3.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为()A.8 B.9 C.10 D.114.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.325.已知复数满足,(为虚数单位),则()A. B. C. D.36.下列函数中,在区间上为减函数的是()A. B. C. D.7.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为()A. B. C. D.8.已知命题,,则是()A., B.,.C., D.,.9.已知x,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.已知中内角所对应的边依次为,若,则的面积为()A. B. C. D.11.要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是()A. B. C. D.12.中,角的对边分别为,若,,,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某种产品的质量指标值服从正态分布,且.某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_________.14.已知,,,则的最小值是__.15.若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是________.16.的展开式中的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.(1)证明:面面;(2)当为中点时,求二面角余弦值.18.(12分)已知函数.(1)若,,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.19.(12分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.20.(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.21.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.22.(10分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)调查组从该样本的城镇居民中按分层抽样抽取出7人,参加一次阅读交流活动,若活动主办方从这7位居民中随机选取2人作交流发言,求被选中的2位居民都是经常阅读居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.此题考查双曲线的标准方程和离心率的概念,属于基础题.2.B【解析】

利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【详解】20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.故选:B.本小题主要考查古典概型的计算,考查组合数的计算,考查学生分析问题的能力,难度较易.3.D【解析】

由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,,,令,则有,故的最小值为11,故选:D.该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.4.B【解析】

设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.5.A【解析】,故,故选A.6.C【解析】

利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.7.D【解析】

由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选D.本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.8.B【解析】

根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:本题考查含量词的命题的否定,属于基础题.9.D【解析】

,不能得到,成立也不能推出,即可得到答案.【详解】因为x,,当时,不妨取,,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D本题主要考查了充分条件,必要条件的判定,属于容易题.10.A【解析】

由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【详解】由余弦定理,得,由,解得,所以,.故选:A.本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.11.C【解析】

根据题意,分两种情况进行讨论:①语文和数学都安排在上午;②语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案.【详解】根据题意,分两种情况进行讨论:①语文和数学都安排在上午,要求节语文课必须相邻且节数学课也必须相邻,将节语文课和节数学课分别捆绑,然后在剩余节课中选节到上午,由于节英语课不加以区分,此时,排法种数为种;②语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但节语文课不加以区分,节数学课不加以区分,节英语课也不加以区分,此时,排法种数为种.综上所述,共有种不同的排法.故选:C.本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题.12.A【解析】

先求出,由正弦定理求得,然后由面积公式计算.【详解】由题意,.由得,.故选:A.本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

直接计算,可得结果.【详解】由题可知:则质量指标值位于区间之外的产品件数:故答案为:本题考查正太分布中原则,审清题意,简单计算,属基础题.14..【解析】

因为,展开后利用基本不等式,即可得到本题答案.【详解】由,得,所以,当且仅当,取等号.故答案为:本题主要考查利用基本不等式求最值,考查学生的转化能力和运算求解能力.15.【解析】

由题意得出展开式中共有11项,;再令求得展开式中各项的系数和.【详解】由的展开式中只有第六项的二项式系数最大,所以展开式中共有11项,所以;令,可求得展开式中各项的系数和是:.故答案为:1.本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题.16.3【解析】

分别用1和进行分类讨论即可【详解】当第一个因式取1时,第二个因式应取含的项,则对应系数为:;当第一个因式取时,第二个因式应取含的项,则对应系数为:;故的展开式中的系数为.故答案为:3本题考查二项式定理中具体项对应系数的求解,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2).【解析】

(1)要证明面面,只需证明面即可;(2)以为坐标原点,以,,分别为,,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.【详解】证明:(1)因为底面为正方形,所以又因为,,满足,所以又,面,面,,所以面.又因为面,所以,面面.(2)由(1)知,,两两垂直,以为坐标原点,以,,分别为,,轴建系如图所示,则,,,,则,.所以,,,,设面法向量为,则由得,令得,,即;同理,设面的法向量为,则由得,令得,,即,所以,设二面角的大小为,则所以二面角余弦值为.本题考查面面垂直的证明以及利用向量法求二面角,考查学生的运算求解能力,此类问题关键是准确写出点的坐标,是一道中档题.18.(1)单调递减区间为,单调递增区间为;(2)【解析】

(1)求导,根据导数与函数单调性关系即可求出.(2)解法一:分类讨论:当时,观察式子可得恒成立;当时,利用导数判断函数为单调递增,可知;当时,令,由,,根据零点存在性定理可得,进而可得在上,单调递减,即不满足题意;解法二:通过分离参数可知条件等价于恒成立,进而记,问题转化为求在上的最小值问题,通过二次求导,结合洛比达法则计算可得结论.【详解】(1)当,,,,令,解得,当时,,当时,,在上单调递减,在上单调递增.(2)解法一:当时,函数,若时,此时对任意都有,所以恒成立;若时,对任意都有,,所以,所以在上为增函数,所以,即时满足题意;若时,令,则,所以在上单调递增,,,可知,一定存在使得,且当时,,所以在上,单调递减,从而有时,,不满足题意;综上可知,实数a的取值范围为.解法二:当时,函数,又当时,,对一切恒成立等价于恒成立,记,其中,则,令,则,在上单调递增,,恒成立,从而在上单调递增,,由洛比达法则可知,,,解得.实数a的取值范围为.本题考查利用导数研究函数的单调性与不等式恒成立问题,考查了分类与整合的解题思想,涉及分离参数法等技巧、涉及到洛比达法则等知识,注意解题方法的积累,属于难题.19.(1)见解析(2)见解析【解析】

(1)连结AC交BD于点O,连结OE,利用三角形中位线可得AP∥OE,从而可证AP∥平面EBD;(2)先证明BD⊥平面PCD,再证明PC⊥平面BDE,从而可证BE⊥PC.【详解】证明:(1)连结AC交BD于点O,连结OE因为四边形ABCD为平行四边形∴O为AC中点,又E为PC中点,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD

;(2)∵△PCD为正三角形,E为PC中点所以PC⊥DE因为平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.本题主要考查空间位置关系的证明,线面平行一般转化为线线平行来证明,直线与直线垂直通常利用线面垂直来进行证明,侧重考查逻辑推理的核心素养.20.【解析】

由不存在逆矩阵,可得,再利用特征多项式求出特征值3,0,,利用矩阵乘法运算即可.【详解】因为不存在逆矩阵,,所以.矩阵的特征多项式为,令,则或,所以,即,所以,所以本题考查矩阵的乘法及特征值、特征向量有关的问题,考查学生的运算能力,是一道容易题.21.另一个特征值为,对应的一个特征向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论