![辽宁省鞍山市2023年八年级数学第一学期期末统考模拟试题【含解析】_第1页](http://file4.renrendoc.com/view12/M05/39/0C/wKhkGWa8AGCACfD_AAHabRphvLg069.jpg)
![辽宁省鞍山市2023年八年级数学第一学期期末统考模拟试题【含解析】_第2页](http://file4.renrendoc.com/view12/M05/39/0C/wKhkGWa8AGCACfD_AAHabRphvLg0692.jpg)
![辽宁省鞍山市2023年八年级数学第一学期期末统考模拟试题【含解析】_第3页](http://file4.renrendoc.com/view12/M05/39/0C/wKhkGWa8AGCACfD_AAHabRphvLg0693.jpg)
![辽宁省鞍山市2023年八年级数学第一学期期末统考模拟试题【含解析】_第4页](http://file4.renrendoc.com/view12/M05/39/0C/wKhkGWa8AGCACfD_AAHabRphvLg0694.jpg)
![辽宁省鞍山市2023年八年级数学第一学期期末统考模拟试题【含解析】_第5页](http://file4.renrendoc.com/view12/M05/39/0C/wKhkGWa8AGCACfD_AAHabRphvLg0695.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省鞍山市2023年八年级数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.满足下列条件的中,不是直角三角形的是A. B.C. D.2.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m3.在下列交通标识图案中,不是轴对称图形的是()A. B. C. D.4.将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项正确的是()A. B.C. D.5.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的作法依据的是()A.SSS B.SAS C.AAS D.ASA6.4的算术平方根是()A. B.2 C.±2 D.±7.若,且,则的值可能是()A.0 B.3 C.4 D.58.下列命题与其逆命题都是真命题的是()A.全等三角形对应角相等B.对顶角相等C.角平分线上的点到角的两边的距离相等D.若a2>b2,则a>b9.某市为了处理污水需要铺设一条长为2000米的管道,实际施工时,×××××××,设原计划每天铺设管道米,则可列方程,根据此情景,题目中的“×××××××”表示所丢失的条件,这一条件为()A.每天比原计划多铺设10米,结果延期10天完成任务B.每天比原计划少铺设10米,结果延期10天完成任务C.每天比原计划少铺设10米,结果提前10天完成任务D.每天比原计划多铺设10米,结果提前10天完成任务10.如图,AB∥DE,∠CED=31°,∠ABC=70°.∠C的度数是()A.28° B.31° C.39° D.42°11.边长为a,b的长方形,它的周长为14,面积为10,则ab+ab的值为()A.35 B.70 C.140 D.28012.点P在AOB的平分线上,点P到OA边的距离等于4,点Q是OB边上的任意一点,则下列选项正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.若,则的值为_______________.14.若,则________.15.已知等腰△ABC中,底边BC=20,D为AB上一点,且CD=16,BD=12,则△ABC的周长为____.16.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.17.如图,在中,BD平分,于点F,于点E,若,则点D到边AB的距离为_____________.18.如图,在中,,按以下步骤作图:分别以点和点为圆心,大于一半长为半径作画弧,两弧相交于点和点,过点作直线交于点,连接,若,,则的周长为_____________________.三、解答题(共78分)19.(8分)在日常生活中,取款、上网等都需要密码.有一种用“因式分解”法设计的密码.原理是:如:多项式因式分解的结果是,若取时,则各个因式的值是:,将3个数字按从小到大的顺序排列,于是可以把“400804”作为一个六位数的密码.对于多项式,当时,写出用上述方法产生的密码,并说明理由.20.(8分)把下列各式化成最简二次根式.(1)(2)(3)(4)21.(8分)如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于轴对称的图形;(2)已知和关于轴成轴对称,写出顶点,,的坐标.22.(10分)观察下列等式:①;②;③……根据上述规律解决下列问题:(1)完成第四个等式:;(2)猜想第个等式(用含的式子表示),并证明其正确性.23.(10分)已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n的值.24.(10分)如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.25.(12分)为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.26.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为1.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据勾股定理的逆定理可判断A、B两项,根据三角形的内角和定理可判断C、D两项,进而可得答案.【详解】解:A、∵,∴,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;B、由可设,∵,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;C、∵,∴,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,所以△ABC是直角三角形,本选项不符合题意;D、由可设,∵∠A+∠B+∠C=180°,∴=180°,解得:,∴,所以△ABC不是直角三角形,本选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理和三角形的内角和定理,属于基础题型,熟练掌握勾股定理的逆定理是解题的关键.2、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm=28×10﹣9m=2.8×10﹣8m,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、D【分析】根据轴对称图形的概念对各个选项进行判断即可.【详解】A、B、C中的图案是轴对称图形,D中的图案不是轴对称图形,故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.4、A【解析】根据将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,可得出对应点关于y轴对称,进而得出答案.【详解】解:∵将△ABC各顶点的横坐标都乘以﹣1,纵坐标不变,顺次连接这三个点,得到另一个三角形,∴对应点的坐标关于y轴对称,只有选项A符合题意.故选:A.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标变化与坐标轴的关系是解题关键.5、A【分析】根据角平分线的作法步骤,连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【详解】解:如下图所示:连接CP、DP在△OCP与△ODP中,由作图可知:∴△OCP≌△ODP(SSS)故选:A.【点睛】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。6、B【解析】试题分析:根据算术平方根的定义可得4的算术平方根是2,故答案选B.考点:算术平方根的定义.7、A【解析】根据不等式的性质,可得答案.【详解】由不等号的方向改变,得a−3<0,解得a<3,四个选项中满足条件的只有0.故选:A.【点睛】考查不等式的性质3,熟练掌握不等式的性质是解题的关键.8、C【解析】对每个选项的命题与逆命题都进行判定即可.【详解】解:A.对应角相等的三角形不一定是全等三角形,该选项的逆命题不是真命题,故选项错误;B.两个角相等,它们不一定是对顶角,该选项的逆命题不是真命题,故选项错误;C.根据角平分线的性质与判定可得,该选项命题与其逆命题都是真命题,故选项正确;D.若a2>b2,a不一定大于b,该选项命题不是真命题,故选错误.故选:C.【点睛】本题主要考查命题与逆命题是否为真命题,解此题的关键在于一是能准确写出命题的逆命题,二是熟练掌握各个基本知识点.9、D【分析】工作时间=工作总量÷工作效率.那么表示原来的工作时间,那么就表示现在的工作时间,10就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道米,那么就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间−实际用的时间=10天,那么就说明每天比原计划多铺设10米,结果提前10天完成任务.
故选:D.【点睛】本题主要考查的是分式方程的实际应用,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.10、C【分析】先根据平行线的性质求出∠CFD的度数,再根据三角形外角的性质即可得出结论.【详解】解:∵AB∥DE,
∴∠CFD=∠ABC=70°,∵∠CFD=∠CED+∠C,
∴∠C=∠CFD-∠CED=70°-31°=39°.
故选:C.【点睛】本题考查了平行线的性质以及三角形的外角的性质,熟练掌握相关的知识是解题的关键.11、B【解析】∵长方形的面积为10,∴ab=10,∵长方形的周长为14,∴2(a+b)=14,∴a+b=7.对待求值的整式进行因式分解,得a2b+ab2=ab(a+b),代入相应的数值,得.故本题应选B.12、B【分析】根据角平分线的性质可知点P到OB边的距离等于4,再根据点到直线的距离垂线段最短即可得出结论.【详解】解:∵点P在AOB的平分线上,∴点P到OA边的距离等于点P到OB边的距离等于4,∵点Q是OB边上的任意一点,∴(点到直线的距离,垂线段最短).故选:B.【点睛】本题考查角平分线的性质,点到直线的距离.理解角平分线上的点到角两边距离相等是解题关键.二、填空题(每题4分,共24分)13、【分析】设a+b=x,换元后利用平方差公式展开再开平方即可.【详解】设a+b=x,则原方程可变形为:∴a+b=±4故答案为:±4【点睛】本题考查的是解一元二次方程-直接开平方法,掌握平方差公式及把a+b看成一个整体或换元是关键.14、【解析】直接利用已知将原式变形进而得出x,y之间的关系进而得出答案.【详解】,,故2y=x,则,故答案为:.【点睛】本题考查了比例的性质,正确将原式变形是解题关键.15、【分析】由BC=20,CD=16,BD=12,计算得出BD2+DC2=BC2,根据勾股定理的逆定理即可证明CD⊥AB,设AD=x,则AC=x+12,在Rt△ACD中,利用勾股定理求出x,得出AC,继而可得出△ABC的周长.【详解】解:在△BCD中,BC=20,CD=16,BD=12,
∵BD2+DC2=BC2,
∴△BCD是直角三角形,∠BDC=90°,
∴CD⊥AB,
设AD=x,则AC=x+12,
在Rt△ADC中,∵AC2=AD2+DC2,
∴x2+162=(x+12)2,
解得:x=.
∴△ABC的周长为:(+12)×2+20=.
故答案为:.【点睛】本题考查勾股定理及其逆定理的知识,解题的关键是利用勾股定理求出AD的长度,得出腰的长度.16、240°.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.17、5【分析】根据角平分线的性质定理,即可求解.【详解】∵在中,BD平分,于点F,于点E,∴DE=DF=5,∴点D到边AB的距离为5.故答案是:5【点睛】本题主要考查角平分线的性质定理,掌握角平分线的性质定理是解题的关键.18、1【分析】利用基本作图可以判定MN垂直平分BC,则DC=DB,然后利用等线段代换得到的周长=AB+AC,再把,代入计算即可.【详解】解:由作法得MN垂直平分BC,则DC=DB,故答案为:1.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.三、解答题(共78分)19、011920,理由见解析.【分析】先将多项式通过提公因式法和公式法进行因式分解后,再将代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.【详解】解:当时,,∴这个密码是:.【点睛】本题考查的知识点是多项式的因式分解,掌握两种常用的提公因式法和公式法的要点是解题的关键.20、(1)6;(2)4;(3)+;(4)5-4【分析】(1)先将根号下的真分数化为假分数,然后再最简二次根式即可;(2)先计算根号下的平方及乘法,再计算加法,最后化成最简二次根式即可;(3)先分别化为最简二次根式,再去括号合并同类项即可;(4)先将看做一个整体,然后利用平方差公式计算即可.【详解】(1)(2)(3)===+(4)====【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.21、(1)图形见详解;(2),,.【分析】(1)根据对称点到对称轴的距离相等,关于轴对称的图形,分别找出对应的顶点、、,连接各顶点;(2)平面直角坐标系中对称轴的性质求出的坐标,的坐标,的坐标,再由、、的坐标求出,,的坐标.【详解】(1)由关于轴对称的图形,对称点到x轴的距离相等,分别找出对应的顶点、、,然后连接各顶点;(2)如图中与关于轴对称,根据关于x轴对称的点纵坐标互为相反数,横坐标相等,可得的坐标,的坐标,的坐标;和关于轴成轴对称,由于关于y轴对称的点横坐标互为相反数,纵坐标相等,可知的坐标,的坐标,的坐标.【点睛】关于轴对称图形的理解,数形结合22、(1);(2)第n个等式,证明见解析.【分析】(1)根据题目中的几个等式可以写出第四个等式;
(2)根据题目中等式的规律可得第n个等式.再将整式的左边展开化简,使得化简后的结果等于等式右边即可证明结论正确.【详解】解:(1)由题目中的几个例子可得,
第四个等式是:72-4×32=13,
故答案为72-4×32=13;
(2)第n个等式是:(2n-1)2-4×(n-1)2=,
证明:∵(2n-1)2-4×(n-1)2
=4n2-4n+1-4(n2-2n+1)
=4n2-4n+1-4n2+8n-4
=4n-3=,
∴(2n-1)2-4×(n-1)2=成立.【点睛】本题考查整式的混合运算、数字的变化,解题的关键是掌握整式的混合运算法则、发现题目中等式的变化规律,写出相应的等式.23、m=﹣1,n=1.【分析】把式子展开,合并同类项后找到x2项和x项的系数,令其为2,可求出m和n的值.【详解】解:(x2+mx+n)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《指南艺术领域》课件
- 《ERP培训讲稿》课件
- 《理发师简谱》课件
- 《部分企业分配》课件
- 《细节图如何拍摄》课件
- 护理安全隐患及防范措施.11.25-【课件】
- 探索农学新领域
- 绿色插画风运动健身营销宣传主题
- 咨询业务季度报告模板
- 员工入股申请书
- 2024-2029年中国动画短片行业市场现状分析及竞争格局与投资发展研究报告
- DZ∕T 0204-2022 矿产地质勘查规范 稀土(正式版)
- 护士如何提高病情观察的能力
- 医保基金监管培训课件
- 参地益肾口服液作用机制研究
- 开工第一课安全教育记录表
- 一氧化碳中毒与抢救知识考核试题与答案
- 部编版小学语文四年级下册教师教学用书(教学参考)完整版
- 学校食堂食品安全知识培训课件
- 初中生物面团发酵实验报告
- 工程项目总投资的构成及估算
评论
0/150
提交评论