高考数学 1221函数的表示方法配套训练 新人教A版必修1_第1页
高考数学 1221函数的表示方法配套训练 新人教A版必修1_第2页
高考数学 1221函数的表示方法配套训练 新人教A版必修1_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【创新设计】届高考数学1-2-2-1函数的表示方法配套训练新人教A版必修1eq\a\vs4\al\co1(双基达标限时20分钟)1.若g(x+2)=2x+3,g(3)的值是().A.9B.7C.5D.3解析令x+2=3,则x=1,∴g(3)=2×1+3=5.答案C2.已知正方形的周长为x,它的外接圆的半径为y,则y关于x的解析式为().A.y=eq\f(1,2)xB.y=eq\f(\r(2),4)xC.y=eq\f(\r(2),8)xD.y=eq\f(\r(2),16)x解析正方形的对角线长为eq\f(\r(2),4)x,从而外接圆半径为y=eq\f(1,2)×eq\f(\r(2),4)x=eq\f(\r(2),8)x.答案C3.下列图形中,不可能作为函数y=f(x)图象的是().解析对C,当x=0时,有两个不同的值与之对应,不符合函数概念,故C不可能作为函数图象.答案C4.已知f(2x+1)=3x-2且f(a)=4,则a的值为________.解析∵f(2x+1)=3x-2=eq\f(3,2)(2x+1)-eq\f(7,2),∴f(x)=eq\f(3,2)x-eq\f(7,2),∴f(a)=4,即eq\f(3,2)a-eq\f(7,2)=4,∴a=5.答案55.已知f(x)与g(x)分别由下表给出x1234f(x)4321x1234g(x)3142那么f(g(3))=________.解析∵g(3)=4,∴f(g(3))=f(4)=1.答案16.已知函数f(x)是二次函数,且它的图象过点(0,2),f(3)=14,f(-eq\r(2))=8+5eq\r(2),求f(x)的解析式.解设f(x)=ax2+bx+c(a≠0),则由题意,得eq\b\lc\{\rc\(\a\vs4\al\co1(c=2,,9a+3b+c=14,,2a-\r(2)b+c=8+5\r(2),))解得eq\b\lc\{\rc\(\a\vs4\al\co1(c=2,,a=3,,b=-5.))所以f(x)=3x2-5x+2.eq\a\vs4\al\co1(综合提高限时25分钟)7.下列表格中的x与y能构成函数的是().eq\a\vs4\al(A.)x非负数非正数y1-1eq\a\vs4\al(B.)x奇数0偶数y10-1eq\a\vs4\al(C.)x有理数无理数y1-1eq\a\vs4\al(D.)x自然数整数有理数y10-1解析A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、有理数之间存在包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A、B、D均不正确.答案C8.已知函数f(x+1)=3x+2,则f(x)的解析式是().A.f(x)=3x+2B.f(x)=3x+1C.f(x)=3x-1D.f(x)=3x+4解析令x+1=t,则x=t-1,∴f(t)=3(t-1)+2=3t-1,∴f(x)=3x-1.答案C9.下列图形中,可以是函数y=f(x)图象的是________.答案:①②③10.若f(2x)=4x2+1,则f(x)的解析式为________.解析f(2x)=4x2+1=(2x)2+1,∴f(x)=x2+1.答案f(x)=x2+111.作出下列函数的图象:(1)f(x)=x+x0;(2)f(x)=1-x(x∈Z,且-2≤x≤2).解(1)如图1(2)如图212.(创新拓展)已知函数f(x)对任意实数a、b,都有f(ab)=f(a)+f(b)成立.(1)求f(0)与f(1)的值;(2)求证:feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))=-f(x);(3)若f(2)=p,f(3)=q(p,q均为常数),求f(36)的值.(1)解令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)证明令a=eq\f(1,x),b=x,得f(1)=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))+f(x)=0,∴feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论