版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列图形中,不是三棱柱展开图的是()A. B. C. D.2.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则().A. B. C. D.3.曲线在点处的切线方程为,则()A. B. C.4 D.84.若复数(为虚数单位),则()A. B. C. D.5.函数的图象可能为()A. B.C. D.6.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55 B.500 C.505 D.50507.已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为()A.1.5 B.2.5 C.3.5 D.4.58.复数()A. B. C.0 D.9.为虚数单位,则的虚部为()A. B. C. D.10.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占2019年贫困户总数的比)及该项目的脱贫率见下表:实施项目种植业养殖业工厂就业服务业参加用户比脱贫率那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的()A.倍 B.倍 C.倍 D.倍11.“”是“,”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件12.关于函数在区间的单调性,下列叙述正确的是()A.单调递增 B.单调递减 C.先递减后递增 D.先递增后递减二、填空题:本题共4小题,每小题5分,共20分。13.过抛物线C:()的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段的中点N且垂直于l的直线与C的准线交于点M,若,则l的斜率为______.14.若,则__________.15.满足约束条件的目标函数的最小值是.16.设变量,满足约束条件,则目标函数的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.18.(12分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.19.(12分)设函数,,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增大而增大.20.(12分)已知函数,设为的导数,.(1)求,;(2)猜想的表达式,并证明你的结论.21.(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.22.(10分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.2.B【解析】
根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【详解】因为终边上有一点,所以,故选:B【点睛】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.3.B【解析】
求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.4.B【解析】
根据复数的除法法则计算,由共轭复数的概念写出.【详解】,,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.5.C【解析】
先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.6.C【解析】
因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,,于是.故选:C【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.7.D【解析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,.解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.8.C【解析】略9.C【解析】
利用复数的运算法则计算即可.【详解】,故虚部为.故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数的虚部为,不是,本题为基础题,也是易错题.10.B【解析】
设贫困户总数为,利用表中数据可得脱贫率,进而可求解.【详解】设贫困户总数为,脱贫率,所以.故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.故选:B【点睛】本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.11.B【解析】
先求出满足的值,然后根据充分必要条件的定义判断.【详解】由得,即,,因此“”是“,”的必要不充分条件.故选:B.【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.12.C【解析】
先用诱导公式得,再根据函数图像平移的方法求解即可.【详解】函数的图象可由向左平移个单位得到,如图所示,在上先递减后递增.故选:C【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,根据抛物线定义和求得,从而求得直线l的倾斜角.【详解】分别过A,B,N作抛物线的准线的垂线,垂足分别为,,,由抛物线的定义知,,,因为,所以,所以,即直线的倾斜角为,又直线与直线l垂直且直线l的倾斜角为锐角,所以直线l的倾斜角为,.故答案为:【点睛】此题考查抛物线的定义,根据已知条件做出辅助线利用抛物线定义和几何关系即可求解,属于较易题目.14.【解析】
由已知利用两角差的正弦函数公式可得,两边平方,由同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.【详解】,得,在等式两边平方得,解得.故答案为:.【点睛】本题主要考查了两角差的正弦函数公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.-2【解析】
可行域是如图的菱形ABCD,代入计算,知为最小.16.-8【解析】
通过约束条件,画出可行域,将问题转化为直线在轴截距最大的问题,通过图像解决.【详解】由题意可得可行域如下图所示:令,则即为在轴截距的最大值由图可知:当过时,在轴截距最大本题正确结果:【点睛】本题考查线性规划中的型最值的求解问题,关键在于将所求最值转化为在轴截距的问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)或;(2)或.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)根据绝对值三角不等式得最小值,再解含绝对值不等式可得的取值范围.试题解析:(1)等价于或或,解得:或.故不等式的解集为或.(2)因为:所以,由题意得:,解得或.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.18.(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接计算即可;(2)利用错位相减法计算;(3),令可得,,讨论即可.【详解】(1)设数列的公差为,数列的公比为,因为,所以,即,解得,或(舍去).所以.(2),,所以,所以.(3)由(1)可得,,所以.因为是数列或中的一项,所以,所以,因为,所以,又,则或.当时,有,即,令.则.当时,;当时,,即.由,知无整数解.当时,有,即存在使得是数列中的第2项,故存在正整数,使得是数列中的项.【点睛】本题考查数列的综合应用,涉及到等差、等比数列的通项,错位相减法求数列的前n项和,数列中的存在性问题,是一道较为综合的题.19.(1)见解析;(2)(i)(ii)证明见解析【解析】
(1)求出导函数,分类讨论即可求解;(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.【详解】(1)因为,所以当时,在上恒成立,所以在上单调递增,当时,的解集为,的解集为,所以的单调增区间为,的单调减区间为;(2)(i)由(1)可知,当时,在上单调递增,至多一个零点,不符题意,当时,因为有两个零点,所以,解得,因为,且,所以存在,使得,又因为,设,则,所以单调递增,所以,即,因为,所以存在,使得,综上,;(ii)因为,所以,因为,所以,设,则,所以,解得,所以,所以,设,则,设,则,所以单调递增,所以,所以,即,所以单调递增,即随着的增大而增大,所以随着的增大而增大,命题得证.【点睛】此题考查利用导函数处理函数的单调性,根据函数的零点个数求参数的取值范围,通过等价转化证明与零点相关的命题.20.,;,证明见解析【解析】
对函数进行求导,并通过三角恒等变换进行转化求得的表达式,对函数再进行求导并通过三角恒等变换进行转化求得的表达式;根据中,的表达式进行归纳猜想,再利用数学归纳法证明即可.【详解】(1),其中,[,其中,(2)猜想,下面用数学归纳法证明:①当时,成立,②假设时,猜想成立即当时,当时,猜想成立由①②对成立【点睛】本题考查导数及其应用、三角恒等变换、归纳与猜想和数学归纳法;考查学生的逻辑推理能力和运算求解能力;熟练掌握用数学归纳法进行证明的步骤是求解本题的关键;属于中档题.21.(1);(2)【解析】
(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.【详解】(1)设,则圆心的坐标为,因为以线段为直径的圆与轴相切,所以,化简得的方程为.(2)由题意,设直线,联立得,设(其中)所以,,且,因为,所以,,所以,故或(舍),直线,因为的周长为所以.即,因为.又,所以,解得,所以.【点睛】本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购货合同格式范本
- 购销合同印花税的征收依据解析
- 购销框架协议范本
- 赛车手事故处理协议
- 跨国工程承包合同
- 软件开发合同协议范本范例
- 软件技术开发与实施合同
- 软件购买及许可协议
- 造纸厂购销合同的履行和解和解机构
- 造纸厂购销合同的履行和解协议
- Unit 4 Section A(2a-2f)课件人教版2024新教材七年级上册英语
- 大学生心理健康智慧树知到期末考试答案章节答案2024年西安电子科技大学
- 2024年江西省赣州章贡区水南镇社区招聘25人历年(高频重点提升专题训练)共500题附带答案详解
- CJ/T 163-2015 导流型容积式水加热器和半容积式水加热器
- 个税专项附加扣除的政策影响及优化分析
- 人民陪审员培训教课件
- 泸州老窖“浓香文酿杯”企业文化知识竞赛考试题库大全-下(多选、填空题)
- 《Excel数据分析》考试复习题库(含答案)
- YC/T 613-2024烟草企业有限空间作业安全技术规范
- 离婚返还彩礼起诉状范本合集
- GB/T 32151.10-2023碳排放核算与报告要求第10部分:化工生产企业
评论
0/150
提交评论