版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A. B. C. D.2.已知等差数列的前项和为,若,则等差数列公差()A.2 B. C.3 D.43.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.4.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()5.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是()A. B. C. D.6.近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;②可以估计不足的大学生使用主要玩游戏;③可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为()A. B. C. D.7.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,,,,,,,则图中空白框中应填入()A., B. C., D.,8.设,满足约束条件,则的最大值是()A. B. C. D.9.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.10.在中,角的对边分别为,若.则角的大小为()A. B. C. D.11.若复数满足,复数的共轭复数是,则()A.1 B.0 C. D.12.的展开式中的项的系数为()A.120 B.80 C.60 D.40二、填空题:本题共4小题,每小题5分,共20分。13.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.14.定义在上的奇函数满足,并且当时,则___15.已知椭圆C:1(a>b>0)的左、右焦点分别为F1,F2,椭圆的焦距为2c,过C外一点P(c,2c)作线段PF1,PF2分别交椭圆C于点A、B,若|PA|=|AF1|,则_____.16.已知非零向量,满足,且,则与的夹角为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,,,,底面为正方形,、分别为、的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.18.(12分)已知,.(1)求函数的单调递增区间;(2)的三个内角、、所对边分别为、、,若且,求面积的取值范围.19.(12分)已知函数.(1)讨论的单调性;(2)曲线在点处的切线斜率为.(i)求;(ii)若,求整数的最大值.20.(12分)已知函数.(1)当时,求不等式的解集;(2)若的图象与轴围成的三角形面积大于6,求的取值范围.21.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:(1)平面;(2)平面平面.22.(10分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选.2.C【解析】
根据等差数列的求和公式即可得出.【详解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故选C.【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.3.B【解析】
根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.4.B【解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.5.C【解析】
利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.【详解】由题意,直角三角形的斜边长为,利用等面积法,可得其内切圆的半径为,所以向次三角形内投掷豆子,则落在其内切圆内的概率为.故选:C.【点睛】本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.6.C【解析】
根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断①的正误;计算使用主要玩游戏的大学生所占的比例,可判断②的正误;计算使用主要找人聊天的大学生所占的比例,可判断③的正误.综合得出结论.【详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以①正确;使用主要玩游戏的人数为,而调查的总人数为,,故超过的大学生使用主要玩游戏,所以②错误;使用主要找人聊天的大学生人数为,因为,所以③正确.故选:C.【点睛】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于基础题.7.A【解析】
依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.8.D【解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.9.B【解析】
根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.10.A【解析】
由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.【详解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故选A.【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.11.C【解析】
根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可.【详解】解:∵,∴,则,∴,故选:C.【点睛】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题.12.A【解析】
化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.【详解】解:如图,直线过定点,,而抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于.故答案为:.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,属于中档题.14.【解析】
根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值.【详解】满足,由函数对称性可知关于对称,且令,代入可得,由奇函数性质可知,所以令,代入可得,所以是以4为周期的周期函数,则当时,所以,所以,故答案为:.【点睛】本题考查了函数奇偶性与对称性的综合应用,周期函数的判断及应用,属于中档题.15.【解析】
根据条件可得判断OA∥PF2,且|PF2|=2|OA|,从而得到点A为椭圆上顶点,则有b=c,解出B的坐标即可得到比值.【详解】因为|PA|=|AF1|,所以点A是线段PF1的中点,又因为点O为线段F1F2的中点,所以OA∥PF2,且|PF2|=2|OA|,因为点P(c,2c),所以PF2⊥x轴,则|PF2|=2c,所以OA⊥x轴,则点A为椭圆上顶点,所以|OA|=b,则2b=2c,所以b=c,ac,设B(c,m)(m>0),则,解得mc,所以|BF2|c,则.故答案为:2.【点睛】本题考查椭圆的基本性质,考查直线位置关系的判断,方程思想,属于中档题.16.(或写成)【解析】
设与的夹角为,通过,可得,化简整理可求出,从而得到答案.【详解】设与的夹角为可得,故,将代入可得得到,于是与的夹角为.故答案为:.【点睛】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2).【解析】
(1)利用中位线的性质得出,然后利用线面平行的判定定理可证明出平面;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,利用空间向量法可求得直线与平面所成角的正弦值.【详解】(1)因为、分别为、的中点,所以.又因为平面,平面,所以平面;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,则,,,,,,,.设平面的法向量为,则,即,令,则,,所以.设直线与平面所成角为,所以.因此,直线与平面所成角的正弦值为.【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成的角,考查推理能力与计算能力,属于中等题.18.(1);(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可求得函数的单调递增区间;(2)由求得,利用余弦定理结合基本不等式求出的取值范围,再结合三角形的面积公式可求得面积的取值范围.【详解】(1),解不等式,解得.因此,函数的单调递增区间为;(2)由题意,则,,,,解得.由余弦定理得,又,,当且仅当时取等号,所以,的面积.【点睛】本题考查正弦型函数单调区间的求解,同时也考查了三角形面积取值范围的计算,涉及余弦定理和基本不等式的应用,考查计算能力,属于中等题.19.(1)在上增;在上减;(2)(i);(ii)2【解析】
(1)求导求出,对分类讨论,求出的解,即可得出结论;(2)(i)由,求出的值;(ii)由(i)得所求问题转化为,恒成立,设,,只需,根据的单调性,即可求解.【详解】(1)当时,,即在上增;当时,,,,,即在上增;在上减;(2)(i),.(ⅱ),即,即,只需.当时,,在单调递增,所以满足题意;当时,,,,所以在上减,在上增,令,..在单调递减,所以所以在上单调递减,,综上可知,整数的最大值为.【点睛】本题考查函数导数的综合应用,涉及函数的单调性、导数的几何意义、极值最值、不等式恒成立,考查分类讨论思想,属于中档题.20.(Ⅰ)(Ⅱ)(2,+∞)【解析】试题分析:(Ⅰ)由题意零点分段即可确定不等式的解集为;(Ⅱ)由题意可得面积函数为为,求解不等式可得实数a的取值范围为试题解析:(I)当时,化为,当时,不等式化为,无解;当时,不等式化为,解得;当时,不等式化为,解得.所以的解集为.(II)由题设可得,所以函数的图像与x轴围成的三角形的三个顶点分别为,,,的面积为.由题设得,故.所以a的取值范围为21.(1)详见解析;(2)详见解析.【解析】
(1)连结根据中位线的性质证明即可.(2)证明,再证明平面即可.【详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚姻财产的协议书范本
- 人员借用协议标准版可打印
- 2024版软件定制开发合同的定制功能保证2篇
- 2024年度土地使用权买卖合同范例2篇
- 个人汽车租赁给公司合同范本
- 快递合同书大全2篇
- 财务主管访谈报告范文
- 本科毕业论文开题报告范文
- 2023年高考真题-历史(天津卷) 含答案
- 员工简易合同范本
- 特应性皮炎的护理查房12301
- 漆包线基础知识课件
- 国家公务员制度
- 普通高中新课程方案介绍课件
- 保管孩子财产协议书
- (完整版)项目部安全隐患排查表
- 机械制图三视图说课课件
- 关于形势政策香港问题论文【三篇】
- 践行核心价值观争做新时代好少年课件
- 射频消融治疗热肿瘤中的热沉效应与治疗效应的分析
- 换向阀的常见故障及维修方法
评论
0/150
提交评论