




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.2.一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为()A. B. C. D.3.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为(
)A. B. C.或 D.或4.已知m为实数,直线:,:,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件5.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知向量,满足,在上投影为,则的最小值为()A. B. C. D.7.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.8.已知向量,,则向量与的夹角为()A. B. C. D.9.已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()A. B. C. D.10.已知定义在上的函数,若函数为偶函数,且对任意,,都有,若,则实数的取值范围是()A. B. C. D.11.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到次结束为止.某考生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围为()A. B. C. D.12.若函数在时取得极值,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为________.14.在数列中,已知,则数列的的前项和为__________.15.函数的定义域是__________.16.正四棱柱中,,.若是侧面内的动点,且,则与平面所成角的正切值的最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为(为参数),与交于,两点.(1)写出曲线的直角坐标方程和直线的普通方程;(2)设点;若、、成等比数列,求的值18.(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为真命题且为假命题,求实数的取值范围.19.(12分)设数列是等比数列,,已知,(1)求数列的首项和公比;(2)求数列的通项公式.20.(12分)在中,、、分别是角、、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.21.(12分)已知非零实数满足.(1)求证:;(2)是否存在实数,使得恒成立?若存在,求出实数的取值范围;若不存在,请说明理由22.(10分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.2.A【解析】
求出满足条件的正的面积,再求出满足条件的正内的点到顶点、、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案.【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题.3.D【解析】
由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故选:D.【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.4.A【解析】
根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.【详解】当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.当m≠0时,则l1∥l2⇒,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,则m=1,即“m=1”是“l1∥l2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.5.B【解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【详解】因为时,所以,,所以复数在复平面内对应的点位于第二象限.故选:B.【点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.6.B【解析】
根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入即可求得.【详解】在上投影为,即又本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.7.D【解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.8.C【解析】
求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.9.A【解析】
利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程.【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,,则的渐近线方程为.故选A.【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.10.A【解析】
根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意,,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.11.A【解析】
根据题意,分别求出再根据离散型随机变量期望公式进行求解即可【详解】由题可知,,,则解得,由可得,答案选A【点睛】本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功12.D【解析】
对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13..【解析】
先求圆的半径,四边形的最小面积,转化为的最小值为,求出切线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率.【详解】由圆的方程得,所以圆心为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最小为圆心到直线的距离,此时,因为,所以,所以的概率为.【点睛】本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.14.【解析】
由已知数列递推式可得数列的所有奇数项与偶数项分别构成以2为公比的等比数列,求其通项公式,得到,再由求解.【详解】解:由,得,,则数列的所有奇数项与偶数项分别构成以2为公比的等比数列.,..故答案为:.【点睛】本题考查数列递推式,考查等差数列与等比数列的通项公式,训练了数列的分组求和,属于中档题.15.【解析】由,得,所以,所以原函数定义域为,故答案为.16.2.【解析】
如图,以为原点建立空间直角坐标系,设点,由得,证明为与平面所成角,令,用三角函数表示出,求解三角函数的最大值得到结果.【详解】如图,以为原点建立空间直角坐标系,设点,则,,又,得即;又平面,为与平面所成角,令,当时,最大,即与平面所成角的正切值的最大值为2.故答案为:2【点睛】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)曲线的直角坐标方程为,直线的普通方程为;(2)【解析】
(1)由极坐标与直角坐标的互化公式和参数方程与普通方程的互化,即可求解曲线的直角坐标方程和直线的普通方程;(2)把的参数方程代入抛物线方程中,利用韦达定理得,,可得到,根据因为,,成等比数列,列出方程,即可求解.【详解】(1)由题意,曲线的极坐标方程可化为,又由,可得曲线的直角坐标方程为,由直线的参数方程为(为参数),消去参数,得,即直线的普通方程为;(2)把的参数方程代入抛物线方程中,得,由,设方程的两根分别为,,则,,可得,.所以,,.因为,,成等比数列,所以,即,则,解得解得或(舍),所以实数.【点睛】本题主要考查了极坐标方程与直角坐标方程,以及参数方程与普通方程的互化,以及直线参数方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.18.(1)(2)或【解析】
(1)根据为真命题列出不等式,进而求得实数的取值范围;(2)应用复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.【详解】(1),且,解得所以当为真命题时,实数的取值范围是.(2)由,可得,又∵当时,,.∵当为真命题,且为假命题时,∴与的真假性相同,当假假时,有,解得;当真真时,有,解得;故当为真命题且为假命题时,可得或.【点睛】本题主要考查结合不等式的含有量词的命题的恒成立问题,存在性问题,考查复合命题的真假判断,意在考查学生对这些知识的掌握水平和分析推理能力.19.(1)(2)【解析】
本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握.(1)设等比数列{an}的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1•qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2),两式相减:20.(1).(2).【解析】
(1)根据题意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等变换的公式,化简得到,再根据为锐角三角形,求得,利用三角函数的图象与性质,即可求解.【详解】(1)由题意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵为锐角三角形,∴,即,则,所以,综上的取值范围为.【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.21.(1)见解析(2)存在,【解析】
(1)利用作差法即可证出.(2)将不等式通分化简可得,讨论或,分离参数,利用基本不等式即可求解.【详解】又即即①当时,即恒成立(当且仅当时取等号),故②当时恒成立(当且仅当时取等号
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于孩子抚养权的离婚合同书
- 货物采购合同补充协议
- 设备销售与购买合同范文
- 车险综合保险合同示例
- 服务合同预付款借款范本
- 歌手签约演出服务合同
- 服装采购代理合同
- 大型建筑机械租赁合同样本范本
- 城乡结合部三方共建项目合同
- 商铺租赁合同规范样本
- 医疗器械经营基础知识培训合规指南
- 小学数学(含奥数)数图形个数和找规律、简便运算专项及练习题附答案
- 新产品研发(开发)项目管理培训教材
- 课堂-可以这么有声有色
- Android Studio开发实战(从零基础到App上线)
- 布草类送洗记录表
- 药物警戒培训
- 中央民族大学 学生休学申请表
- 哈萨克斯坦劳动法中文版
- 寰枢椎脱位的护理课件
- 反面典型案例剖析材料范文(通用6篇)
评论
0/150
提交评论