




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.62.已知函数,,若对任意的,存在实数满足,使得,则的最大值是()A.3 B.2 C.4 D.53.已知集合,,若,则实数的值可以为()A. B. C. D.4.已知集合,,则等于()A. B. C. D.5.已知,则的值等于()A. B. C. D.6.已知,则不等式的解集是()A. B. C. D.7.已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.8.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°9.复数的共轭复数在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.由曲线围成的封闭图形的面积为()A. B. C. D.11.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.12.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为________.14.已知正实数满足,则的最小值为.15.在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:①存在两点,使;②存在两点,使与直线都成的角;③若,则四面体的体积一定是定值;④若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是____.16.(5分)已知,且,则的值是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.(1)证明:点始终在直线上且;(2)求四边形的面积的最小值.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.(1)求证:直线MN⊥平面ACB1;(2)求点C1到平面B1MC的距离.19.(12分)已知数列满足,等差数列满足,(1)分别求出,的通项公式;(2)设数列的前n项和为,数列的前n项和为证明:.20.(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.21.(12分)已知函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.22.(10分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.
答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.2.A【解析】
根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值.【详解】,,对任意的,存在实数满足,使得,易得,即恒成立,,对于恒成立,设,则,令,在恒成立,,故存在,使得,即,当时,,单调递减;当时,,单调递增.,将代入得:,,且,故选:A【点睛】本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.3.D【解析】
由题意可得,根据,即可得出,从而求出结果.【详解】,且,,∴的值可以为.故选:D.【点睛】考查描述法表示集合的定义,以及并集的定义及运算.4.A【解析】
进行交集的运算即可.【详解】,1,2,,,,1,.故选:.【点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.5.A【解析】
由余弦公式的二倍角可得,,再由诱导公式有,所以【详解】∵∴由余弦公式的二倍角展开式有又∵∴故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题6.A【解析】
构造函数,通过分析的单调性和对称性,求得不等式的解集.【详解】构造函数,是单调递增函数,且向左移动一个单位得到,的定义域为,且,所以为奇函数,图像关于原点对称,所以图像关于对称.不等式等价于,等价于,注意到,结合图像关于对称和单调递增可知.所以不等式的解集是.故选:A【点睛】本小题主要考查根据函数的单调性和对称性解不等式,属于中档题.7.C【解析】
先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,,作出的图象,又由易知.故选:C.【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.8.C【解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.9.D【解析】
由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.【详解】,,对应点为,在第四象限.故选:D.【点睛】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.10.A【解析】
先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.【详解】封闭图形的面积为.选A.【点睛】本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.11.C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.12.A【解析】
建立平面直角坐标系,求出直线,设出点,通过,找出与的关系.通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围.【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线,设点,所以由得,即,所以,由及,解得,由二次函数的图像知,,所以的取值范围是.故选A.【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用,解出,即可求出双曲线的渐近线方程.【详解】,且,,,该双曲线的渐近线方程为:.故答案为:.【点睛】本题考查了双曲线离心率与渐近线方程,考查了双曲线基本量的关系,考查了运算能力,属于基础题.14.4【解析】
由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.15.①③④【解析】
对于①中,当点与点重合,与点重合时,可判断①正确;当点点与点重合,与直线所成的角最小为,可判定②不正确;根据平面将四面体可分成两个底面均为平面,高之和为的棱锥,可判定③正确;四面体在上下两个底面和在四个侧面上的投影,均为定值,可判定④正确.【详解】对于①中,当点与点重合,与点重合时,,所以①正确;对于②中,当点点与点重合,与直线所成的角最小,此时两异面直线的夹角为,所以②不正确;对于③中,设平面两条对角线交点为,可得平面,平面将四面体可分成两个底面均为平面,高之和为的棱锥,所以四面体的体积一定是定值,所以③正确;对于④中,四面体在上下两个底面上的投影是对角线互相垂直且对角线长度均为1的四边形,其面积为定义,四面体在四个侧面上的投影,均为上底为,下底和高均为1的梯形,其面积为定值,故四面体在该正方体六个面上的正投影的面积的和为定值,所以④正确.故答案为:①③④.【点睛】本题主要考查了以空间几何体的结构特征为载体的谜题的真假判定及应用,其中解答中涉及到棱柱的集合特征,异面直线的关系和椎体的体积,以及投影的综合应用,着重考查了推理与论证能力,属于中档试题.16.【解析】
由于,且,则,得,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)最小值为1.【解析】
(1)根据抛物线的定义,判断出的轨迹为抛物线,并由此求得轨迹的方程.设出两点的坐标,利用导数求得切线的方程,由此求得点的坐标.写出直线的方程,联立直线的方程和曲线的方程,根据韦达定理求得点的坐标,并由此判断出始终在直线上,且.(2)设直线的倾斜角为,求得的表达式,求得的表达式,由此求得四边形的面积的表达式进而求得四边形的面积的最小值.【详解】(1)∵动圆过定点,且与直线相切,∴动圆圆心到定点和定直线的距离相等,∴动圆圆心的轨迹是以为焦点的抛物线,∴轨迹的方程为:,设,∴直线的方程为:,即:①,同理,直线的方程为:②,由①②可得:,直线方程为:,联立可得:,,∴点始终在直线上且;(2)设直线的倾斜角为,由(1)可得:,,∴四边形的面积为:,当且仅当或,即时取等号,∴四边形的面积的最小值为1.【点睛】本小题主要考查动点轨迹方程的求法,考查直线和抛物线的位置关系,考查抛物线中四边形面积的最值的计算,考查运算求解能力,属于中档题.18.(1)证明见解析.(2)【解析】
(1)连接AC1,BC1,结合中位线定理可证MN∥BC1,再结合线面垂直的判定定理和线面垂直的性质分别求证AC⊥BC1,BC1⊥B1C,即可求证直线MN⊥平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【详解】(1)证明:连接AC1,BC1,则N∈AC1且N为AC1的中点;∵M是AB的中点.所以:MN∥BC1;∵A1A⊥平面ABC,AC⊂平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC⊂平面BB1C1C,CC1⊂平面BB1C1C,∴AC⊥平面BB1C1C,BC⊂平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四边形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC⊂平面ACB1,CB1⊂平面ACB1,∴MN⊥平面ACB1,(2)作交于点,设C1到平面B1CM的距离为h,因为MP,所以•MP,因为CM,B1C;B1M,所以所以:CM•B1M.因为,所以,解得所以点,到平面的距离为【点睛】本题主要考查面面垂直的证明以及点到平面的距离,一般证明面面垂直都用线面垂直转化为面面垂直,而点到面的距离常用体积转化来求,属于中档题19.(1)(2)证明见解析【解析】
(1)因为,所以,所以,即,又因为,所以数列为等差数列,且公差为1,首项为1,则,即.设的公差为,则,所以(),则(),所以,因此,综上,.(2)设数列的前n项和为,则两式相减得,所以,设则,所以.20.(1)28种;(2)分布见解析,.【解析】
(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.【详解】解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.(2)X的可能取值为0,1,2,3.,,,.故X的概率分布为:X0123P所以.【点睛】本题主要考查组合数与组合公式及离散型随机变量的期望和方差,相对不难,注意运算的准确性.21.(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析【解析】
(1)求出的定义域,导函数,对参数、分类讨论得到答案.(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.(3)由(1)可知,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 叉车使用安全管理制度
- 口腔库房采集管理制度
- 卫生技术人员管理制度
- 商贸公司物业管理制度
- 房屋工程维修方案(3篇)
- 祠堂重建改造方案(3篇)
- 地铁安检基础管理制度
- 制剂车间各项管理制度
- 港口企业让利方案(3篇)
- 商城装修现场管理制度
- 成本控制与管理讲义
- JJF 1665-2017流式细胞仪校准规范
- CB/T 3595-1994不锈钢酸洗钝化膏
- 2023年高考理综生物试卷及答案(海南卷)2
- 【不做为不担当自查报告】不作为不担当自查报告教师
- 他达拉非课件
- 熊春锦先生校勘的《德道经》
- 环网柜基础知识培训课程完整版课件
- 大数据时代的互联网信息安全题库
- 护理体查操作评分标准
- 《交通调查与数据分析》课程教学大纲(本科)
评论
0/150
提交评论