




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第62讲直线与圆的位置关系1、直线与圆的位置关系(1)三种位置关系:相交、相切、相离.相离相切相交图形量化方程观点Δeq\a\vs4\al(<)0Δeq\a\vs4\al(=)0Δeq\a\vs4\al(>)0几何观点deq\a\vs4\al(>)rdeq\a\vs4\al(=)rdeq\a\vs4\al(<)r(2)圆的切线方程的常用结论①过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2;②过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2;③过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.1、(2023•新高考Ⅰ)过点SKIPIF1<0与圆SKIPIF1<0相切的两条直线的夹角为SKIPIF1<0,则SKIPIF1<0SKIPIF1<0A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】SKIPIF1<0【解析】圆SKIPIF1<0可化为SKIPIF1<0,则圆心SKIPIF1<0,半径为SKIPIF1<0;设SKIPIF1<0,切线为SKIPIF1<0、SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故选:SKIPIF1<0.2、(2022•北京)若直线SKIPIF1<0是圆SKIPIF1<0的一条对称轴,则SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】SKIPIF1<0【解析】圆SKIPIF1<0的圆心坐标为SKIPIF1<0,SKIPIF1<0直线SKIPIF1<0是圆SKIPIF1<0的一条对称轴,SKIPIF1<0圆心在直线SKIPIF1<0上,可得SKIPIF1<0,即SKIPIF1<0.故选:SKIPIF1<0.3、(多选题)(2021•新高考Ⅱ)已知直线SKIPIF1<0与圆SKIPIF1<0,点SKIPIF1<0,则下列说法正确的是SKIPIF1<0SKIPIF1<0A.若点SKIPIF1<0在圆SKIPIF1<0上,则直线SKIPIF1<0与圆SKIPIF1<0相切 B.若点SKIPIF1<0在圆SKIPIF1<0外,则直线SKIPIF1<0与圆SKIPIF1<0相离 C.若点SKIPIF1<0在直线SKIPIF1<0上,则直线SKIPIF1<0与圆SKIPIF1<0相切 D.若点SKIPIF1<0在圆SKIPIF1<0内,则直线SKIPIF1<0与圆SKIPIF1<0相离【答案】SKIPIF1<0【解析】SKIPIF1<0中,若SKIPIF1<0在圆上,则SKIPIF1<0,而圆心到直线SKIPIF1<0的距离SKIPIF1<0,所以直线与圆相切,即SKIPIF1<0正确;SKIPIF1<0中,点SKIPIF1<0在圆SKIPIF1<0外,则SKIPIF1<0,而圆心到直线SKIPIF1<0的距离SKIPIF1<0,所以直线SKIPIF1<0与圆相交,所以SKIPIF1<0不正确;SKIPIF1<0中,点SKIPIF1<0在直线SKIPIF1<0上,则SKIPIF1<0,而圆心到直线SKIPIF1<0的距离SKIPIF1<0,所以直线SKIPIF1<0与圆相切,所以SKIPIF1<0正确;SKIPIF1<0中,点SKIPIF1<0在圆SKIPIF1<0内,则SKIPIF1<0,而圆心到直线SKIPIF1<0的距离SKIPIF1<0,所以直线SKIPIF1<0与圆相离,所以SKIPIF1<0正确;故选:SKIPIF1<0.4、(2022•甲卷(理))若双曲线SKIPIF1<0的渐近线与圆SKIPIF1<0相切,则SKIPIF1<0.【答案】SKIPIF1<0.【解析】双曲线SKIPIF1<0的渐近线:SKIPIF1<0,圆SKIPIF1<0的圆心SKIPIF1<0与半径1,双曲线SKIPIF1<0的渐近线与圆SKIPIF1<0相切,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0舍去.故答案为:SKIPIF1<0.5、(2022•新高考Ⅱ)设点SKIPIF1<0,SKIPIF1<0,若直线SKIPIF1<0关于SKIPIF1<0对称的直线与圆SKIPIF1<0有公共点,则SKIPIF1<0的取值范围是.【答案】SKIPIF1<0,SKIPIF1<0.【解析】点SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以直线SKIPIF1<0关于SKIPIF1<0对称的直线的斜率为:SKIPIF1<0,所以对称直线方程为:SKIPIF1<0,即:SKIPIF1<0,SKIPIF1<0的圆心SKIPIF1<0,半径为1,所以SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.故答案为:SKIPIF1<0,SKIPIF1<06、【2020年新课标1卷文科】已知圆SKIPIF1<0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为(
)A.1 B.2C.3 D.4【答案】B【解析】【分析】当直线和圆心与点SKIPIF1<0的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆SKIPIF1<0化为SKIPIF1<0,所以圆心SKIPIF1<0坐标为SKIPIF1<0,半径为SKIPIF1<0,设SKIPIF1<0,当过点SKIPIF1<0的直线和直线SKIPIF1<0垂直时,圆心到过点SKIPIF1<0的直线的距离最大,所求的弦长最短,此时SKIPIF1<0根据弦长公式得最小值为SKIPIF1<0.故选:B.7、【2021年新高考2卷】已知直线SKIPIF1<0与圆SKIPIF1<0,点SKIPIF1<0,则下列说法正确的是(
)A.若点A在圆C上,则直线l与圆C相切 B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离 D.若点A在直线l上,则直线l与圆C相切【答案】ABD【解析】圆心SKIPIF1<0到直线l的距离SKIPIF1<0,若点SKIPIF1<0在圆C上,则SKIPIF1<0,所以SKIPIF1<0,则直线l与圆C相切,故A正确;若点SKIPIF1<0在圆C内,则SKIPIF1<0,所以SKIPIF1<0,则直线l与圆C相离,故B正确;若点SKIPIF1<0在圆C外,则SKIPIF1<0,所以SKIPIF1<0,则直线l与圆C相交,故C错误;若点SKIPIF1<0在直线l上,则SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,直线l与圆C相切,故D正确.故选:ABD.1、直线l:x-y+1=0与圆C:x2+y2-4x-2y+1=0的位置关系是()A.相离B.相切C.相交且过圆心D.相交但不过圆心【答案】D【解析】将圆C的方程化为标准方程,得(x-2)2+(y-1)2=4,圆心为(2,1),半径为2,圆心到直线l的距离为eq\f(|2-1+1|,\r(2))=eq\r(2)<2,所以直线l与圆相交.又圆心不在直线l上,所以直线不过圆心.2、直线SKIPIF1<0与圆SKIPIF1<0相切,则SKIPIF1<0的值是A.-2或12B.2或-12C.-2或-12D.2或12【答案】D【解析】圆的标准方程为SKIPIF1<0,圆心SKIPIF1<0到直线SKIPIF1<0的距离SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.3、直线x-eq\r(3)y=0截圆(x-2)2+y2=4所得劣弧所对的圆心角是()A.eq\f(π,6)B.eq\f(π,3)C.eq\f(π,2)D.eq\f(2π,3)【答案】:D【解析】:画出图形,如图,圆心(2,0)到直线的距离为d=eq\f(|2|,\r(12+(\r(3))2))=1,∴sin∠AOC=eq\f(d,OC)=eq\f(1,2),∴∠AOC=eq\f(π,6),∴∠CAO=eq\f(π,6),∴∠ACO=π-eq\f(π,6)-eq\f(π,6)=eq\f(2π,3).故选D.4、过点P(2,4)作圆(x-1)2+(y-1)2=1的切线,则切线方程为()A.3x+4y-4=0B.4x-3y+4=0C.x=2或4x-3y+4=0D.y=4或3x+4y-4=0【答案】C【解析】当斜率不存在时,直线x=2与圆相切;当斜率存在时,设切线方程为y-4=k(x-2),即kx-y+4-2k=0,则eq\f(|k-1+4-2k|,\r(k2+1))=1,解得k=eq\f(4,3),得切线方程为4x-3y+4=0.综上,得切线方程为x=2或4x-3y+4=0.考向一直线与圆的位置关系例1、直线kx-y+2-k=0与圆x2+y2-2x-8=0的位置关系为()A.相交、相切或相离B.相交或相切C.相交D.相切【答案】C【解析】方法一直线kx-y+2-k=0的方程可化为k(x-1)-(y-2)=0,该直线恒过定点(1,2).因为12+22-2×1-8<0,所以点(1,2)在圆x2+y2-2x-8=0的内部,所以直线kx-y+2-k=0与圆x2+y2-2x-8=0相交.方法二圆的方程可化为(x-1)2+y2=32,所以圆的圆心为(1,0),半径为3.圆心到直线kx-y+2-k=0的距离为eq\f(|k+2-k|,\r(1+k2))=eq\f(2,\r(1+k2))≤2<3,所以直线与圆相交变式1、已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.试证明:不论k为何实数,直线l和圆C总有两个交点.【解析】由题意,得不论k为何实数,直线l总过点P(0,1),圆C的圆心C(1,-1),半径R=2eq\r(3).又PC=eq\r(5)<2eq\r(3)=R,所以点P(0,1)在圆C的内部,即不论k为何实数,直线l总经过圆C内部的定点P,所以不论k为何实数,直线l和圆C总有两个交点.变式2、(2022年广东省广州大学附属中学高三模拟试卷)已知SKIPIF1<0是圆SKIPIF1<0内一点,现有以SKIPIF1<0为中点的弦所在直线SKIPIF1<0和直线SKIPIF1<0,则()A.SKIPIF1<0且SKIPIF1<0与圆相交 B.SKIPIF1<0且SKIPIF1<0与圆相离C.SKIPIF1<0且SKIPIF1<0与圆相离 D.SKIPIF1<0且SKIPIF1<0与圆相交【答案】C【解析】【详解】由SKIPIF1<0可知,以SKIPIF1<0为中点弦所在直线SKIPIF1<0的斜率为SKIPIF1<0则直线SKIPIF1<0的方程为SKIPIF1<0,直线SKIPIF1<0的方程可化为SKIPIF1<0由SKIPIF1<0可知,SKIPIF1<0圆心SKIPIF1<0到直线SKIPIF1<0的距离为SKIPIF1<0因为SKIPIF1<0是圆SKIPIF1<0内一点,所以SKIPIF1<0,即SKIPIF1<0故直线SKIPIF1<0与圆相离故选:C方法总结:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.考向二圆的弦长问题例2、(1)直线y=kx-1与圆C:(x+3)2+(y-3)2=36相交于A,B两点,则|AB|的最小值为()A.6 B.2eq\r(11)C.12 D.16【答案】B【解析】因为直线y=kx-1过定点(0,-1),故圆C的圆心C(-3,3)到直线y=kx-1的距离的最大值为eq\r(-3-02+3+12)=5.又圆C的半径为6,故弦长|AB|的最小值为2eq\r(62-52)=2eq\r(11).(2)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=2eq\r(3),则直线l的方程为()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=0【答案】B【解析】当直线l的斜率不存在,即直线l的方程为x=0时,弦长为2eq\r(3),符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为2eq\r(3),半径为2可知,圆心到该直线的距离为1,从而有eq\f(|k+2|,\r(k2+1))=1,解得k=-eq\f(3,4),综上,直线l的方程为x=0或3x+4y-12=0.变式1、(1)(2022·河北保定·高三期末)若SKIPIF1<0为圆SKIPIF1<0的弦SKIPIF1<0的中点,则直线SKIPIF1<0的方程为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】圆SKIPIF1<0的圆心为SKIPIF1<0,则SKIPIF1<0.因为SKIPIF1<0,所以SKIPIF1<0,故直线SKIPIF1<0的方程为SKIPIF1<0.故选:A(2)(2022·河北张家口·高三期末)直线SKIPIF1<0与圆SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0两点,则SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】圆心SKIPIF1<0到直线SKIPIF1<0的距离为SKIPIF1<0,圆SKIPIF1<0的半径为SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,故选:B.变式2、(1)(2022年广东省高三模拟试卷)若斜率为SKIPIF1<0的直线与SKIPIF1<0轴交于点SKIPIF1<0,与圆SKIPIF1<0相交于点SKIPIF1<0两点,若SKIPIF1<0,则SKIPIF1<0______.【答案】SKIPIF1<0【解析】【详解】设点SKIPIF1<0,则直线SKIPIF1<0的方程为SKIPIF1<0,即SKIPIF1<0,因为SKIPIF1<0,SKIPIF1<0的半径为2,故弦SKIPIF1<0的弦心距为SKIPIF1<0,即圆心SKIPIF1<0到直线SKIPIF1<0的距离为SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,故答案为:SKIPIF1<0.(2)(2022·山东烟台·高三期末)若直线SKIPIF1<0将圆SKIPIF1<0分成的两段圆弧长度之比为1:3,则实数a的值为()A.﹣4 B.﹣4或2 C.2 D.﹣2或4【答案】D【解析】圆的标准方程为SKIPIF1<0,圆心为SKIPIF1<0,半径SKIPIF1<0,设直线和圆相交于AB,由较短弧长与较长弧长之比为1:3,则SKIPIF1<0,故SKIPIF1<0,则圆心到直线SKIPIF1<0的距离SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或4,故选:D.方法总结:弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2eq\r(r2-d2).考向三圆的切线问题例3已知点P(eq\r(2)+1,2-eq\r(2)),点M(3,1),圆C:(x-1)2+(y-2)2=4.(1)求过点P的圆C的切线方程;(2)求过点M的圆C的切线方程,并求出切线长.【解析】(1)由题意,得圆心C(1,2),半径r=2.因为(eq\r(2)+1-1)2+(2-eq\r(2)-2)2=4,所以点P在圆C上.又kPC=eq\f(2-\r(2)-2,\r(2)+1-1)=-1,所以切线的斜率为-eq\f(1,kPC)=1,所以过点P的圆C的切线方程是y-(2-eq\r(2))=x-(eq\r(2)+1),即x-y+1-2eq\r(2)=0.(2)因为(3-1)2+(1-2)2=5>4,所以点M在圆C外部.当过点M的直线斜率不存在时,直线方程为x=3,即x-3=0,满足题意;当切线的斜率存在时,设切线方程为y-1=k(x-3),即kx-y+1-3k=0,则圆心C到切线的距离d=eq\f(|k-2+1-3k|,\r(k2+1))=2,解得k=eq\f(3,4),所以切线方程为y-1=eq\f(3,4)(x-3),即3x-4y-5=0.综上所述,过点M的圆C的切线方程为x-3=0或3x-4y-5=0.因为MC=eq\r((3-1)2+(1-2)2)=eq\r(5),所以过点M的圆C的切线长为eq\r(MC2-r2)=eq\r(5-4)=1.变式1、(多选题)(2022·山东省淄博实验中学高三期末)在平面直角坐标系SKIPIF1<0中,过直线SKIPIF1<0上任一点SKIPIF1<0做圆SKIPIF1<0的两条切线,切点分别为SKIPIF1<0、SKIPIF1<0,则下列说法正确的是()A.四边形SKIPIF1<0为正方形时,点SKIPIF1<0的坐标为SKIPIF1<0B.四边形SKIPIF1<0面积的最小值为1C.SKIPIF1<0不可能为钝角D.当SKIPIF1<0为等边三角形时,点SKIPIF1<0的坐标为SKIPIF1<0【答案】ABC【解析】解:对A:设SKIPIF1<0,由题意,四边形SKIPIF1<0为正方形时,SKIPIF1<0,解得SKIPIF1<0,所以点SKIPIF1<0的坐标为SKIPIF1<0,选项A正确;对B:四边形SKIPIF1<0面积SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,故选项B正确;对C:由题意,SKIPIF1<0,在直角三角形SKIPIF1<0中,SKIPIF1<0,由选项B知SKIPIF1<0,所以SKIPIF1<0,因为SKIPIF1<0为锐角,所以SKIPIF1<0,所以SKIPIF1<0,故选项C正确;对D:当SKIPIF1<0为等边三角形时,SKIPIF1<0,所以SKIPIF1<0,则SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,此时点SKIPIF1<0的坐标为SKIPIF1<0或SKIPIF1<0,故选项D错误;故选:ABC.方法总结:求圆的切线方程应注意的问题求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线.1、(2022·广东清远·高三期末)直线SKIPIF1<0被圆SKIPIF1<0截得的最短弦长为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】将圆化为一般方程为SKIPIF1<0,因此可知圆C的圆心为SKIPIF1<0,半径为4,因为直线l过定点SKIPIF1<0,所以当圆心到直线l的距离为SKIPIF1<0时,直线l被圆C截得的弦长最短,且最短弦长为SKIPIF1<0.故选:D2、(2022·湖北省鄂州高中高三期末)已知圆:SKIPIF1<0,过直线SKIPIF1<0:SKIPIF1<0上的一点SKIPIF1<0作圆SKIPIF1<0的一条切线,切点为SKIPIF1<0,则SKIPIF1<0的最小值为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】圆SKIPIF1<0:SKIPIF1<0中,圆心SKIPIF1<0,半径SKIPIF1<0设SKIPIF1<0,则SKIPIF1<0,即SKIPIF1<0则SKIPIF1<0SKIPIF1<0(当且仅当SKIPIF1<0时等号成立)故选:A3、(2022·山东青岛·高三期末)已知圆SKIPIF1<0截直线SKIPIF1<0所得弦的长度为4,则实数a的值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由题知圆的标准方程为SKIPIF1<0,则圆心坐标为SKIPIF1<0,半径SKIPIF1<0,SKIPIF1<0圆SKIPIF1<0截直线SKIPIF1<0所得弦的长度为4,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0.故选:C.4、(2022·山东德州·高三期末)已知圆O:SKIPIF1<0,直线l:SKIPIF1<0与两坐标轴交点分别为M,N,当直线l被圆O截得的弦长最小时,SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】∵直线l:SKIPIF1<0,即SKIPIF1<0,∴直线恒过定点SKIPIF1<0,又圆O:SKIPIF1<0,∴由圆的性质可知直线SKIPIF1<0时,直线l被圆O截得的弦长最小,此时SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,由直线l:SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.故选:C.5、(清远市高三期末试题)已知P,Q为圆SKIPIF1<0上的两个动点,点SKIPIF1<0,且SKIPIF1<0,则坐标原点О到直线PQ的距离的最大值为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【解析】设SKIPIF1<0的中点为SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,设SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0点的轨迹是以SKIPIF1<0为圆心,半径为SKIPIF1<0的圆.则点SKIPIF1<0到直线SKIPIF1<0的距离的最大值为SKIPIF1<0.故选:C6、(多选题)(2022·江苏海安·高三期末)关于直线SKIPIF1<0与圆SKIPIF1<0,下列说法正确的是()A.若SKIPIF1<0与圆SKIPIF1<0相切,则SKIPIF1<0为定值B.若SKIPIF1<0,则SKIPIF1<0被圆SKIPIF1<0截得的弦长为定值C.若SKIPIF1<0与圆SKIPIF1<0有公共点,则SKIPIF1<0D.若SKIPIF1<0,则SKIPIF1<0与圆SKIPIF1<0相交【答案】BCD【解析】圆SKIPIF1<0的圆心为SKIPIF1<0,半径为SKIPIF1<0.对于A选项,若SKIPIF1<0与圆SKIPIF1<0相切,则SKIPIF1<0,可得SKIPIF1<0,A错;对于B选项,若SKIPIF1<0,圆心SKIPIF1<0到直线SKIPIF1<0的距离为SKIPIF1<0,此时SKIPIF1<0被圆SKIPIF1<0截得的弦长为SKIPIF1<0,B对;对于C选项,若SKIPIF1<0与圆SKIPIF1<0有公共点,则SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,C对;对于D选项,当SKIPIF1<0时,直线SKIPIF1<0的方程为SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即直线SKIPIF1<0过定点SKIPIF1<0,SKIPIF1<0,即点SKIPIF1<0在圆SKIPIF1<0内,故直线SKIPIF1<0与圆SKIPIF1<0相交,D对.故选:BCD.7、(多选题)(2022年重庆市巴蜀中学高三模拟试卷)古希腊数学家阿波罗尼斯发现如下结论:“平面内到两个定点SKIPIF1<0,SKIPIF1<0的距离之比为定值SKIPIF1<0的点的轨迹是圆”.在平面直角坐标系中,已知点SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0满足SKIPIF1<0,设点SKIPIF1<0的轨迹为圆SKIPIF1<0,点SKIPIF1<0为圆心,则下列说法正确的是()A.圆SKIPIF1<0的方程为SKIPIF1<0B.直线SKIPIF1<0与圆SKIPIF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论