版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市高密四中学文慧校2023-2024学年中考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.4 B.6 C.16π D.82.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8910户数262则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4 B.极差是2 C.平均数是9 D.众数是93.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5h到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮4.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是()A. B. C. D.125.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为()A.6 B.8 C.10 D.126.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.17.若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是()A.矩形 B.菱形C.对角线互相垂直的四边形 D.对角线相等的四边形8.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤9.不等式组的解集在数轴上表示正确的是()A. B. C. D.10.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.π B.2π C.4π D.8π二、填空题(共7小题,每小题3分,满分21分)11.已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.12.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=_______________________.13.在函数y=xx14.正十二边形每个内角的度数为.15.将一副三角板如图放置,若,则的大小为______.16.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.17.若是关于的完全平方式,则__________.三、解答题(共7小题,满分69分)18.(10分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)19.(5分)我国古代数学著作《增删算法统宗》记载“官兵分布”问题:“一千官军一千布,一官四疋无零数,四军才分布一疋,请问官军多少数.”其大意为:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.问官和兵各几人?20.(8分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.21.(10分)如图所示,在中,,用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)连接AP当为多少度时,AP平分.22.(10分)计算:4sin30°+(1﹣)0﹣|﹣2|+()﹣223.(12分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.24.(14分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.2、A【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.3、D【解析】
根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.4、C【解析】
设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【详解】∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,
),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-•-•-••(b-)=9,∴k=,故选:C【点睛】考核知识点:反比例函数系数k的几何意义.结合图形,分析图形面积关系是关键.5、C【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA∵△ABC是等腰三角形,点D是BC边上的中点∴∴解得∵EF是线段AC的垂直平分线∴点A关于直线EF的对称点为点C∴∵∴AD的长为BM+MD的最小值∴△CDM的周长最短故选:C.【点睛】本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.6、A【解析】
由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.故选A.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.7、C【解析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.8、C【解析】
根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①当x=1时,y=a+b+c<0,正确;②当x=-1时,y=a-b+c>1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.故所有正确结论的序号是①②③⑤.故选C9、A【解析】分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可.详解:由①得,x≤1,由②得,x>-1,故此不等式组的解集为:-1<x≤1.在数轴上表示为:故选A.点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、B【解析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径的长为:=2π.故选B.考点:弧长的计算;旋转的性质.二、填空题(共7小题,每小题3分,满分21分)11、3或【解析】
以B.E.D为顶点的三角形与△DEF相似分两种情形画图分别求解即可.【详解】如图作CM⊥AB当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,设EF交AD于点O∵AO=OD,OE∥BD∴AE=EB=3当∠FED=∠DEB时则∠FED=∠FEA=∠DEB=60°此时△FED~△DEB,设AE=ED=x,作DN⊥AB于N,则EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案为3或【点睛】本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.12、72°.【解析】
解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案为72°.【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.13、x≠-3【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使xx+3在实数范围内有意义,必须14、【解析】
首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【详解】试题分析:正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为150°.15、160°【解析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.16、详见解析.【解析】
先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【详解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣1≤x<1,故答案为:x<1、x≥﹣1、﹣1≤x<1.【点睛】本题考查了解一元一次不等式组的概念.17、1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.三、解答题(共7小题,满分69分)18、35km【解析】试题分析:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.试题解析:如图,作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E处距离港口A有35km.19、官有200人,兵有800人【解析】
设官有x人,兵有y人,根据1000官兵正好分1000匹布,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设官有x人,兵有y人,依题意,得:,解得:.答:官有200人,兵有800人.【点睛】本题主要考查二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.20、(1)①证明见解析;②23【解析】试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;(2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴PAPB∴PB2=PA•PC=12,∴PB=23;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,AC=AD∠EAC=∠BAD∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.考点:相似形综合题21、(1)详见解析;(2)30°.【解析】
(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新型节能水泵、风机和压缩机项目资金筹措计划书代可行性研究报告
- 2024年甲基六氢苯酐项目资金筹措计划书代可行性研究报告
- 2023-2024学年广东省深圳市罗湖区三年级(上)期末英语试卷
- 2024年多功能呼吸机项目资金需求报告代可行性研究报告
- 中班健康活动教案:有用的鼻子
- 二年级上数学教案-9的乘法口诀(练习课二)-人教新课标
- 3.4分析土壤形成的原因课件高中地理鲁教版(2019)必修一
- 腱鞘炎康复治疗
- 1.1多种多样的区域秦岭课件高中地理人教版(2019)选择性必修二
- 大声回答我在这儿(小班教案)-幼儿园语言教案
- 固体废弃物专项措施方案
- 2024年上海民政局夫妻离婚协议书
- 【降低刑事责任年龄的法理探析(论文)11000字】
- 青年创业就业见习基地项目建设方案
- 2024年刑法知识考试题库含答案【满分必刷】
- 啤酒酿造与文化学习通超星期末考试答案章节答案2024年
- 50万吨生物柴油建设项目可行性研究报告
- 【核心素养目标】统编版 选必1 第一单元 第1课 中国古代政治制度的形成与发展 教学设计
- 教师专业发展支持系统
- 2024年公开选调(聘)报名表
- 八年级历史上册(部编版)第六单元中华民族的抗日战争(大单元教学设计)
评论
0/150
提交评论