重要度分析范文_第1页
重要度分析范文_第2页
重要度分析范文_第3页
重要度分析范文_第4页
重要度分析范文_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MACROBUTTONMTEditEquationSection2SEQMTEqn\r\hSEQMTSec\r1\hSEQMTChap\r1\h(2)重要度分析在系统中一个部分或最小割集对顶事件发生的贡献大小成为重要度。重要度对改进系统设计是十分有用的信息。在工程中重要度分析还可以用于确定系统运行中需检测的部位及制定系统故障诊断时的核对清单。重要度有不同的含义,下面主要介绍较常用的四种重要度,即概率重要度、结构重要度、关键重要度和相关割集重要度。这些重要度从不同的角度反映了部件对顶事件发生的影响大小。=1\*GB3①临界状态与关键部件系统中的部件可以有多种故障模式,每一种故障模式对应于故障树中一个基本事件。这里所指的重要度均系基本事件重要度的定义和计算方法,部件重要度应等于它所包含的基本重要度的和。当部件只有一种故障模式时,部件重要度即等于基本事件重要度。为简单起见,假设部件只含有一种故障模式。在介绍重要度的概念和计算方法之间,首先介绍两个常用到的概念,这就是“系统的临界状态”和“关键部件”。对部件两态系统,系统的可能状态数为个,这个状态(微观状态)分别对应于系统正常和系统故障(两个宏观状态)状态。但并非个微观状态都能直接引发宏观状态的变化,只有在处于其中某些特殊状态时才能直接引发宏观状态变化,这些特殊状态即称为系统的临界状态。任何非临界状态的微观状态都必须首先变成临界状态后才能引发宏观状态变化,系统宏观状态的变化简称为系统状态变化。例如一个两部件并联系统,有4个微观状态,其中,,属于系统正常状态,属于系统故障状态。状态不可能直接变为状态,因此它不属于临界状态。那些当且仅当该部件状态变化及可导致系统状态变化的部件成为该临界状态的关键部件。关联系统中的任一部件都是关键部件,即任一部件都能在个微观状态中找到与之对应的临界状态。显然,任一部件是否成为关键部件,取决于其他个部件的状态,因此,凡谈到部件的临界状态时,是指除部件外,其他个部件状态的某种组合。仍以两部件并联系统为例,该系统的临界状态有,,三个。一个临界状态可以对应若干个关键部件,反之一个关键部件也可以对应若干个临界状态。=2\*GB3②概率重要度设系统故障的结构函数为 系统故障的概率密度函数为 定义概率重要度为 概率重要度的定义可以解释为:部件的重要度是部件取1时顶事件概率和部件状态取时顶事件概率值的差。例:设有系统的故障树,其结构函数为 顶事件概率表达式为 所以 比较式GOTOBUTTONZEqnNum787301REFZEqnNum787301\!(6)和GOTOBUTTONZEqnNum119452REFZEqnNum119452\!(7),有 将式GOTOBUTTONZEqnNum119452REFZEqnNum119452\!(7)展开得 的物理意义为:当部件1故障时系统故障的概率。就是当且仅当部件1故障时系统故障概率。当且仅当部件1故障时系统的状态为或,相应的概率应为,而 这和式GOTOBUTTONZEqnNum870434REFZEqnNum870434\!(9)的结果相同,这就说明部件1的概率重要度的物理意义为:当且仅当部件1故障系统即故障的概率。由上例的分析,不难得到一般性的结论。部件概率重要度的物理含义为:系统处于当且仅当部件故障系统即故障的状态的概率。联系到前面关于关键部件和临界状态的定义,又可说,部件的概率重要度就是系统处于部件为关键部件状态的概率,或者说,部件的概率重要度就是系统处于部件的临界状态的概率。例:试计算2部件串联、2部件并联和3中取2表决系统的概率重要度,设时间和故障率分别为:小时,,,。解:由题设,三个部件的不可靠度分别为对2部件串联系统对于2部件并联系统对于3中取2表决系统对于2部件串联系统,只要任何一个部件故障系统即故障,因此,当且仅当部件1故障系统即故障的状态为部件2完好,反之,当且仅当部件2故障系统即故障的状态为部件1完好,故其中,,为部件1和部件2的可靠度。对于2部件并联系统,当且仅当一个部件故障系统即故障的状态为另一个部件也故障,故③结构的重要度对于单调关联系统,第个部件的状态从0变到1,相应系统状态可能有下述三种变化: 对于部件某一给定状态,其余个部件的可能状态组合有种,定义 显然,这种求和仅对情况(a)的发生次数进行了累加,其他两种情况的贡献均为0。情况(a)的发生次数就是部件的临界状态数,显然部件的临界状态愈多,该部件导致系统故障的可能性就愈大,故可作为第个部件对系统故障影响大小的量度。为使每个部件的结构重要度不大于1,定义部件的结构重要度为: 由上式计算是很繁的,只在系统部件数很少时可行。实际上可用概率重要度来计算结构重要度。可以证明,若所有部件故障和正常的概率均为1/2,则有 例:对于2部件并联系统,用上述方法计算结构重要度,对于式(4.27)进行验证。解:两部件并联系统的可能状态数为4,当其中一个部件状态固定后,系统可能取的状态只有两个,即另一部件的两种状态,对于并联系统,用第一种方法得结构重要度为 用第二种方法计算结构重要度时,先假设两个部件的故障概率分别等于,则有例:计算图4.12所示各部件的结构重要度。这个系统共有四个最小割集,它们是:x4,x1,x2,由于部件2,3和部件1在结构中地位相同,它们的结构重要度应相等,故④关键重要度I概率重要度在数学上的意义是部件概率改变1个单位所引起系统概率的变化。但是由于部件原有的概率大小不同,它们同样变化1个单位的难易也不同,这种性质在概率重要度中反映不出来,关键重要度是一个变化率的比,即部件故障概率的变化率所引起的系统故障的变化率,这就把改善一个已经比较可靠的部件比改善一个尚不太可靠的部件难这一性质考虑进去了,从上述意义上讲称为相对概率重要度更恰当,但习惯仍沿用关键重要度名称。定义关键重要度为(17)因为(18)所以(19)例:试计算2部件串联、2部件并联和3中取2表决系统的关键重要度,设时间和故障率分别为:t=20小时,=0.001/小时,=0.002/小时,=0.003/小时。(概率重要度已在前面的例子中求出)对于2部件串联系统对于2部件并联系统对于3中取2系统关键重要度的表达式(19)可写为:式中,是系统处于部件为关键部件的临界状态的概率。是部件发生故障的概率。因此就是部件触发系统故障的概率。越大表明由部件触发系统故障的可能性就越大。于是可以按关键重要度的大小,列出系统部件诊断检查的顺序表来指导系统的运行和维修,以利于用最快的速度排除系统的故障。例:计算图4.12所示系统各部件的关键重要度,并列出诊断检查顺序表,设。解:由前面的例子可知图4.12中构成部件割集的部件4的结构重要度最大,比1、2、3部件结构重要度大一倍,但这不能作为诊断检查顺序的依据,这些部件触发系统故障的概率应由关键重要度确定。计算结果如下。由关键重要度可知,系统诊断检查的顺序维1、2、3部件,其次为部件4。⑤相关割集重要度首先定义相关割集和无关割集,部件的相关割集是指含部件的割集,部件的无关割集是指不含部件的割集,这里割集均为最小割集的简称。若系统的全部割集中有个部件的相关割集,则定义(20)的意义是至少一个部件的相关割集发生的概率,的意义是第个部件的相关割集,的意义是全部个部件相关割集的并集。定义部件的相关割集重要度为(21)和关键重要度中的略不同,后者排除了所有无关割集发生的情况,前者仅排除了无关割集发生但相关割集不发生情况,保留

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论