2023届云南省丽江市华坪县数学八上期末质量跟踪监视模拟试题含解析_第1页
2023届云南省丽江市华坪县数学八上期末质量跟踪监视模拟试题含解析_第2页
2023届云南省丽江市华坪县数学八上期末质量跟踪监视模拟试题含解析_第3页
2023届云南省丽江市华坪县数学八上期末质量跟踪监视模拟试题含解析_第4页
2023届云南省丽江市华坪县数学八上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若一个三角形的两边长分别为2和4,则第三边长可能是().A.1 B.2 C.3 D.72.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为()A.6 B.5 C.4 D.33.下列二次根式中是最简二次根式的是()A. B. C. D.4.“2的平方根”可用数学式子表示为()A. B. C. D.5.下列命题:①有一条直角边和斜边对应相等的两个直角三角形全等;②周长相等的两个三角形是全等三角形③全等三角形对应边上的高、中线、对应角的角平分线相等;其中正确的命题有()A.个 B.个 C.个 D.个6.从2019年8月1日开始,温州市实行垃圾分类,以下是几种垃圾分类的图标,其中哪个图标是轴对称图形()A. B. C. D.7.已知直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是()A.x>2 B.x>3 C.x<2 D.x<38.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟 B.48分钟 C.46分钟 D.33分钟9.如图,在△ABC中,AB=AC,BC=10,S△ABC=60,AD⊥BC于点D,EF垂直平分AB,交AB于点E,AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.10 B.11C.12 D.1310.下列计算正确的是()A.m3•m2•m=m5 B.(m4)3=m7 C.(﹣2m)2=4m2 D.m0=0二、填空题(每小题3分,共24分)11.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是_____.12.测得某人的头发直径为0.00000000835米,这个数据用科学记数法表示为____________13.等腰三角形的两边长分别为2和7,则它的周长是_____.14.在中是分式的有_____个.15.若二次根式是最简二次根式,则最小的正整数为______.16.若A,则A=(___________)17.如图,将直线OA向上平移3个单位长度,则平移后的直线的表达式为_____.18.计算:=_____.三、解答题(共66分)19.(10分)某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图像如图所示.(1)月用电量为100度时,应交电费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月用电量为260度时,应交电费多少元?20.(6分)先化简,再求值:21.(6分)解不等式,并把解集在数轴上表示出来.22.(8分)如图,为的中点,,,求证:.23.(8分)(1)式子++的值能否为0?为什么?(2)式子++的值能否为0?为什么?24.(8分)在实数的计算过程中去发现规律.(1)5>2,而<,规律:若a>b>0,那么与的大小关系是:.(2)对于很小的数0.1、0.001、0.00001,它们的倒数=;=;=.规律:当正实数x无限小(无限接近于0),那么它的倒数.(3)填空:若实数x的范围是0<x<2,写出的范围.25.(10分)已知:如图,在中,,,(1)作的平分线,交于点;作的中点;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)连接,求证:.26.(10分)某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数和中位数;(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?

参考答案一、选择题(每小题3分,共30分)1、C【分析】利用三角形的三边关系定理求出第三边长的取值范围,由此即可得.【详解】设第三边长为,由三角形的三边关系定理得:,即,观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了三角形的三边关系定理的应用,熟记三角形的三边关系定理是解题关键.2、B【分析】利用角平分线性质定理可得,角平分线上的点到角两边的距离相等,通过等量代换即可得.【详解】解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DC=DE=4,∴BD=BC﹣CD=9﹣4=1.故选:B.【点睛】掌握角平分线的性质为本题的关键.3、B【分析】根据最简二次根式的定义判断即可.【详解】解:A、,不是最简二次根式,本选项错误;B、是最简二次根式,本选项正确;C、不是最简二次根式,本选项错误;D、不是最简二次根式,本选项错误;故选B.【点睛】此题考查了最简二次根式,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.4、A【分析】根据a(a≥0)的平方根是±求出即可.【详解】解:2的平方根是故选:A.【点睛】本题考查平方根的性质,正确理解平方根表示方法是解本题的关键.5、B【分析】逐项对三个命题判断即可求解.【详解】解:①有一条直角边和斜边对应相等的两个直角三角形()全等,故①选项正确;②全等三角形为能够完全重合的三角形,周长相等不一定全等,故②选项错误;③全等三角形的性质为对应边上的高线,中线,角平分线相等,故③选项正确;综上,正确的为①③.故选:B.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理和性质定理是解题关键.6、B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、不轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、C【分析】根据函数图象可得当y>0时,图象在x轴上方,然后再确定x的范围.【详解】直线y=kx+b中,当y>0时,图象在x轴上方,则不等式kx+b>0的解集为:x<2,故选:C.【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想,利用图象可直接确定答案.8、A【解析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.9、C【分析】根据三角形的面积公式即可得到AD的长度,再由最短路径的问题可知PB+PD的最小即为AD的长.【详解】∵∴∵EF垂直平分AB∴点A,B关于直线EF对称∴∴,故选:C.【点睛】本题主要考查了最短路径问题,熟练掌握相关解题技巧及三角形的高计算方法是解决本题的关键.10、C【分析】根据幂的乘方与积的乘方,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判断即可.【详解】解:∵m3•m2•m=m6,∴选项A不符合题意;∵(m4)3=m12,∴选项B不符合题意;∵(﹣2m)2=4m2,∴选项C符合题意;∵m0=1,∴选项D不符合题意.故选:C.【点睛】本题考查了幂的乘方与积的乘方,同底数幂的乘法的运算方法,以及零指数幂的运算方法,掌握运算法则是解题关键.二、填空题(每小题3分,共24分)11、乙队【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S甲2>S乙2,

∴队员身高比较整齐的球队是乙,

故答案为:乙队.【点睛】此题考查方差的意义.解题关键在于掌握方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000835=8.35×10−1.故答案为:8.35×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、16【分析】根据2和7可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【详解】当7为腰时,周长=7+7+2=16;当2为腰时,因为2+2<7,所以不能构成三角形.故答案为16【点睛】本题主要考查了三角形三边关系,也考查了等腰三角形的性质.关键是根据2,7,分别作为腰,由三边关系定理,分类讨论.14、1【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:分母中有未知数的有:,共有1个.故答案为:1.【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.15、1【分析】根据最简二次根式的定义求解即可.【详解】解:∵a是正整数,且是最简二次根式,∴当a=1时,,不是最简二次根式,当a=1时,,是最简二次根式,则最小的正整数a为1,故答案为:1.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.16、2【分析】由A,得A=,计算可得.【详解】由A,得A==2.故答案为2【点睛】本题考核知识点:分式的加法.解题关键点:掌握分式的加法法则.17、y=2x+1【分析】设直线OA的解析式为:y=kx,代入(1,2)求出直线OA的解析式,再将直线OA向上平移1个单位长度,得到平移后的直线的表达式.【详解】设直线OA的解析式为:y=kx,把(1,2)代入,得k=2,则直线OA解析式是:y=2x.将其上平移1个单位长度,则平移后的直线的表达式为:y=2x+1.故答案是:y=2x+1.【点睛】本题考查了直线的平移问题,掌握直线的解析式以及直线平移的性质是解题的关键.18、【分析】根据立方根的意义求解即可.【详解】.三、解答题(共66分)19、(1)60;(2)y=0.5x+10(x≥100);(3)140元.【分析】(1)根据函数图象,当x=100时,可直接从函数图象上读出y的值;

(2)设一次函数为:y=kx+b,将(100,60),(200,110)两点代入进行求解即可;

(3)将x=260代入(2)式所求的函数关系式进行求解可得出应交付的电费.【详解】(1)根据函数图象,知:当x=100时,y=60,故当月用电量为100时,应交付电费60元,故答案是:60;(2)设一次函数为y=kx+b,当x=100时,y=60;当x=200时,y=110解得:所求的函数关系式为:(3)当x=260时,y=0.5×260+10=140∴月用量为260度时,应交电费140元.20、【分析】根据运算顺序,先计算括号里边的式子,发现两分式的分母不相同,先把分母中的多项式分解因式,然后通分,再利用分式的减法法则,分母不变只把分子相减,然后分式的除法法则计算即可.【详解】解:原式======【点睛】此题考查了分式的混合运算,也考查了公式法、提公因式法分解因式的运用,是一道综合题.解答此题的关键是把分式化到最简.21、x>-6,见详解.【分析】通过去括号,移项,合并同类项,求出解集,然后在数轴上把解表示出来即可.【详解】去括号:,移项:,合并同类项:,数轴上表示解集如图:【点睛】本题主要考查一元一次不等式的解法,掌握解一元一次不等式的基本步骤,是解题的关键.22、证明见解析.【分析】利用SAS即可证出,再根据全等三角形的性质,即可证出结论.【详解】证明∵为的中点,∴.在和中,,∴,∴.【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS判定两个三角形全等是解决此题的关键.23、(1)不能为1,理由见解析;(2)不能为1,理由见解析【分析】(1)将原式通分,相加,根据原式的分母不为1,可得x≠1,y≠1,z≠1,从而分子也不为1,则原式的值不能为1;(2)将原式通分,相加,根据原式的分母不为1,可得y﹣z≠1,x﹣y≠1,z﹣x≠1,从而分子也不为1,则原式的值不能为1.【详解】解:(1),,,,,式子的值不能为1;(2),,,,,式子的值不能为1.【点睛】本题考查了分式的加减及偶次方的非负性,掌握通分的方法,并明确偶次方的非负性,是解题的关键.24、(1)<;(2)10;1000;1;无穷大;(3)>【分析】(1)两个正实数,这个数越大,则它的倒数越小,判断出与的大小关系即可;(2)首先求出0.1、0.001、0.00001的倒数各是多少;然后判断出当正实数x无限小(无限接近于0),那么它的倒数无穷大;(3)根据:0<x<2,可得:>.【详解】解:(1)5>2,而<,规律:若a>b>0,那么与的大小关系是:<,故答案为:<;(2)对于很小的数0.1、0.001、0.00001,它们的倒数=10;=1000;=1.规律:当正实数x无限小(无限接近于0),那么它的倒数无穷大,故答案为:10;1000;1;无穷大;(3)∵0<x<2,∴>.故答案为:>.【点睛】本题考查了正实数的倒数的大小比较以及规律,注意探究发现规律是解题的关键.25、(1)见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论