2023届四川省广安邻水县联考八年级数学第一学期期末统考试题含解析_第1页
2023届四川省广安邻水县联考八年级数学第一学期期末统考试题含解析_第2页
2023届四川省广安邻水县联考八年级数学第一学期期末统考试题含解析_第3页
2023届四川省广安邻水县联考八年级数学第一学期期末统考试题含解析_第4页
2023届四川省广安邻水县联考八年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=()A.25cm B.45cm C.50cm D.55cm2.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个 B.2个 C.3个 D.4个3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列二次根式中,可以与合并的是(

).A.

B.

C.

D.5.下列长度的每组三根小木棒,能组成三角形的一组是()A.3,3,6 B.4,5,10 C.3,4,5 D.2,5,36.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x千米/小时,则方程可列为()A.+= B.-= C.+1=﹣ D.+1=+7.若点A(n,m)在第四象限,则点B(m2,﹣n)()A.第四象限 B.第三象限 C.第二象限 D.第一象限8.如图,在等腰中,,是斜边的中点,交边、于点、,连结,且,若,,则的面积是()A.2 B.2.5 C.3 D.3.59.具备下列条件的中,不是直角三角形的是()A. B.C. D.10.如图,长方形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过C.则长方形的一边CD的长度为()A.1 B. C. D.211.如图,的面积为12,,,的垂直平分线分别交,边于点,,若点为边的中点,点为线段上一动点,则周长的最小值为()A.6 B.8 C.10 D.1212.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.两图形重合二、填空题(每题4分,共24分)13.如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).14.当a=3,a-b=-1时,a2-ab的值是15.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是_____.16.当x=_____时,分式的值为零.17.若分式有意义,则的取值范围是__________.18.计算:_______________.三、解答题(共78分)19.(8分)如图,四边形ABCD中,∠B=90°,AB//CD,M为BC边上的一点,AM平分∠BAD,DM平分∠ADC,求证:(1)AM⊥DM;(2)M为BC的中点.20.(8分)如图已知的三个顶点坐标分别是,,.(1)将向上平移4个单位长度得到,请画出;(2)请画出与关于轴对称的;(3)请写出的坐标,并用恰当的方式表示线段上任意一点的坐标.21.(8分)如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.22.(10分)亚洲未来最大火车站雄安站是京雄城际铁路的终点站,于2018年12月1日正式开工建设,预计2020年底投入使用.该车站建成后,可实现雄安新区与北京、天津半小时交通圈,与石家庄1小时交通圈,将进一步完善京津冀区域高速铁路网结构,便利沿线群众出行,对提高新区全国辐射能力,促进京津冀协同发展,均具有十分重要的意义.某工厂承包了雄安站建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.23.(10分)化简与计算(1)将公式变形成已知与,求.(假定变形中所有分式其分母都不为0)(2)(3)计算:(4)计算:,并把结果按字母升幂排列24.(10分)如图,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求:(1)AO,FO的长;(2)图中半圆的面积.25.(12分)(新知理解)如图①,若点、在直线l同侧,在直线l上找一点,使的值最小.作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.(解决问题)如图②,是边长为6cm的等边三角形的中线,点、分别在、上,则的最小值为cm;(拓展研究)如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)26.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】由垂直平分线的性质可求得AD=BD,则△ACD的周长可化为AC+CD+BD,即AC+BC,可求得答案.【详解】解:∵DE为AB的垂直平分线,∴AD=BD,∴AC+CD+AD=AC+CD+BD=AC+BC=50,故选:C.【点睛】本题考查线段垂直平分线的知识,解题的关键是掌握线段垂直平分线的性质:线段垂直平分线上的点到这条线段两端点的距离相等.2、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3、A【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,是中心对称图形,故本选项符合题意;

B、是轴对称图形,不是中心对称图形,故本选项不符合题意;

C、不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

D、不是轴对称图形,是中心对称图形,故本选项不符合题意.

故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、C【解析】分别将每一项化为最简二次根式,如果与是同类二次根式,即可合并.【详解】解:A、,不能与合并,故A不符合题意;B、不能与合并,故B不符合题意;C、,能与合并,故C符合题意;D、,不能与合并,故D不符合题意;故答案为:C.【点睛】本题考查同类二次根式,解题的关键是熟练运用同类二次根式的概念.5、C【分析】根据三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,对各选项进行逐一分析即可.【详解】A、3+3=6,不能构成三角形;B、4+5<10,不能构成三角形;C、3+4>5,,能够组成三角形;D、2+3=5,不能组成三角形.故选:C.【点睛】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.6、C【分析】设原计划速度为x千米/小时,根据“一运送物资车开往距离出发地180千米的目的地”,则原计划的时间为:,根据“出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶”,则实际的时间为:+1,根据“实际比原计划提前40分钟到达目的地”,列出关于x的分式方程,即可得到答案.【详解】设原计划速度为x千米/小时,根据题意得:原计划的时间为:,实际的时间为:+1,∵实际比原计划提前40分钟到达目的地,∴+1=﹣,故选C.【点睛】本题考查了由实际问题抽象出分式方程,正确找出等量关系,列出分式方程是解题的关键.7、A【分析】根据第四象限的点的横坐标是正数,纵坐标是负数确定出m、n的符号,然后判断出点B的横、纵坐标的符号即可得出结果.【详解】解:∵点A(n,m)在第四象限,∴n>0,m<0,∴m2>0,﹣n<0,∴点B(m2,﹣n)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、B【分析】首先根据等腰直角三角形的性质和余角的性质可证明△BPE≌△CPD,可得PE=PD,于是所求的的面积即为,故只要求出PE2的值即可,可过点E作EF⊥AB于点F,如图,根据题意可依次求出BE、BF、BP、PF的长,即可根据勾股定理求出PE2的值,进而可得答案.【详解】解:在中,∵,AC=BC,是斜边的中点,∴AP=BP=CP,CP⊥AB,∠B=∠BCP=∠DCP=45°,∵∠DPC+∠EPC=90°,∠BPE+∠EPC=90°,∴∠DPC=∠BPE,在△BPE和△CPD中,∵∠B=∠DCP,BP=CP,∠BPE=∠DPC,∴△BPE≌△CPD(ASA),∴PE=PD,∵,,∴CE=1,BE=3,过点E作EF⊥AB于点F,如图,则EF=BF=,又∵BP=,∴,在直角△PEF中,,∴的面积=.故选:B.【点睛】本题考查了等腰直角三角形的性质和判定、全等三角形的判定和性质、勾股定理和三角形的面积等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.9、D【分析】根据三角形的内角和定理和直角三角形的定义逐项判断即可.【详解】A、由和可得:∠C=90°,是直角三角形,此选项不符合题意;B、由得,又,则∠A=90°,是直角三角形,此选项不符合题意;C、由题意,,是直角三角形,此选项不符合题意;D、由得3∠C+3∠C+∠C=180°,解得:,则∠A=∠B=≠90°,不是直角三角形,此选项符合题意,故选:D.【点睛】本题考查三角形的内角和定理、直角三角形的定义,会判定三角形是直角三角形是解答的关键.10、C【分析】本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.【详解】解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)∵点E是AD的中点,AE=1,AD=BC,∴EC=2,利用勾股定理可得.故选:C.【点睛】本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解,本题难度中等.11、B【分析】先根据中点的定义求出CD,然后可知的周长=PC+PD+CD,其中CD为定长,从而得出PC+PD最小时,的周长最小,连接AD交EF于点P,根据垂直平分线的性质可得此时PC+PD=PA+PD=AD,根据两点之间线段最短可得AD即为PC+PD的最小值,然后根据三线合一和三角形的面积公式即可求出AD,从而求出结论.【详解】解:∵,点为边的中点∴CD=∵的周长=PC+PD+CD,其中CD为定长∴PC+PD最小时,的周长最小连接AD交EF于点P,如下图所示∵EF垂直平分AC∴PA=PC∴此时PC+PD=PA+PD=AD,根据两点之间线段最短,AD即为PC+PD的最小值∵,点D为BC的中点∴AD⊥BC∴,即解得:AD=6∴此时的周长=PC+PD+CD=AD+CD=1即周长的最小值为1.故选B.【点睛】此题考查的是求三角形周长的最小值、垂直平分线的性质和等腰三角形的性质、掌握两点之间线段最短、垂直平分线的性质和三线合一是解决此题的关键.12、B【解析】在坐标系中,点的坐标关于y轴对称则纵坐标不变,横坐标变为原坐标的相反数,题中纵坐标不变,横坐标都乘以-1,变为原来的数的相反数,所以关于y坐标轴对称,故B正确.二、填空题(每题4分,共24分)13、【分析】利用等边三角形的性质和特殊角去解题.【详解】解:等边三角形的周长为1,作于点,的周长=的周长=,的周长分别为故答案为:【点睛】本题考查等边三角形的性质以及规律性问题的解答.14、-1【解析】试题分析:直接提取公因式,然后将已知代入求出即可.即a2-ab=a(a-b)=1×(-1)=-1.考点:因式分解-提公因式法.点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.15、14【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【详解】∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.16、1【解析】直接利用分式的值为零可得分子为零进而得出答案.【详解】解:∵分式的值为零,∴x﹣1=0,解得:x=1.故答案为1.【点睛】此题主要考查了分式的值为零的条件,正确把握分式的值为零的条件是解题关键.17、x≠1【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式有意义,∴x-1≠0,解得x≠1.故答案为:x≠1.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.18、【分析】先把化成,再根据同底数幂的乘法计算即可.【详解】解:原式=.【点睛】本题是对同底数幂乘法的考查,熟记同底数幂相乘,底数不变,指数相加.三、解答题(共78分)19、(1)详见解析;(2)详见解析【分析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,求出∠AMD=90°,根据垂直的定义得到答案;(2)作MN⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换可得结论.【详解】证明:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作MN⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【点睛】本题考查的是平行线的性质、三角形内角和定理以及角平分线的性质,掌握平行线的性质和角平分线上的点到角的两边的距离相等是解题的关键.20、(1)图见解析;(2)图见解析;(3)的坐标为;线段上任意一点的坐标为,其中.【分析】(1)先利用平移的性质求出的坐标,再顺次连接即可得;(2)先利用轴对称的性质求出的坐标,再顺次连接即可得;(3)由(1)中即可知的坐标,再根据线段所在直线的函数表达式即可得.【详解】(1)向上平移4个单位长度的对应点坐标分别为,即,顺次连接可得到,画图结果如图所示;(2)关于y轴对称的对应点坐标分别为,顺次连接可得到,画图结果如图所示;(3)由(1)可知,的坐标为线段所在直线的函数表达式为则线段上任意一点的坐标为,其中.【点睛】本题考查了画平移图形、画轴对称图形、点坐标的性质等知识点,依据题意求出各点经过平移、轴对称后的对应点的坐标是解题关键.21、30°【分析】试题分析:连接DE,由A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B可证明得到△CDE为等边三角形,再利用直角三角形两锐角互余即可得.【详解】试题解析:连接DE,∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三角形,∴∠C=60°,∴∠AEC=90°-∠C=30°.22、(1)原计划每天生产的零件个数是2400个,规定的天数是10天;(2)480人.【分析】(1)设原计划每天生产的零件个,根据“若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件”建立方程,再解方程求出x的值,然后利用24000除以x即可得规定的天数;(2)设原计划安排的工人人数为人,从而可得每个工人每天生产的零件个数为个,再根据“恰好提前两天完成24000个零件的生产任务”建立方程,然后解方程即可得.【详解】(1)设原计划每天生产的零件个,由题意得:,解得,经检验,是所列方程的解,且符合题意,则规定的天数为(天),答:原计划每天生产的零件个数是2400个,规定的天数是10天;(2)设原计划安排的工人人数为人,由题意得:,解得,经检验,是所列方程的解,且符合题意,答:原计划安排的工作人数为480人.【点睛】本题考查了分式方程的实际应用,依据题意,正确建立方程是解题关键.23、(1);(2);(3)6x-3(4)【分析】(1)代数式通过变形,即可得到答案;(2)先把代数式进行因式分解,计算括号内的运算,然后除法变成乘法,进行计算即可;(3)根据完全平方公式进行计算,以及整式乘法的运算法则进行计算,即可得到答案;(4)利用多项式乘以多项式进行计算,然后按照x的升幂排列,即可得到答案.【详解】解:(1)∵,∴abx=ab,∴abx+b=a,∴()b=a,;(2)原式====;(3)原式===6x3;(4)原式==【点睛】本题考查了分式的化简求值,整式的混合运算,解题的关键是熟练掌握整式的运算法则进行计算.24、(1)FO=13cm;(2)(cm2).【分析】(1)根据勾股定理分别求出AO,FO的长;(2)利用半圆面积公式计算即可.【详解】(1)∵在Rt△ABO中,∠B=90°,BO=3cm,AB=4cm,∴AO2=BO2+AB2=25,∴AO=5cm.在Rt△AFO中,由勾股定理得FO2=AO2+AF2=132,∴FO=13cm;(2)图中半圆的面积为π×=π×=(cm2).【点睛】此题考查勾股定理,在直角三角形中已知两条边长即可利用勾股定理求得第三条边的长度.25、(1);(2)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;

(2)根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论