2023届四川省遂宁市安居区数学八上期末质量检测模拟试题含解析_第1页
2023届四川省遂宁市安居区数学八上期末质量检测模拟试题含解析_第2页
2023届四川省遂宁市安居区数学八上期末质量检测模拟试题含解析_第3页
2023届四川省遂宁市安居区数学八上期末质量检测模拟试题含解析_第4页
2023届四川省遂宁市安居区数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°2.如图所示,在下列条件中,不能判断≌的条件是()A., B.,C., D.,3.若,,则的值为()A.1 B. C.6 D.4.下列运算正确的是()A.a3+a3=a3 B.a•a3=a3 C.(a3)2=a6 D.(ab)3=ab35.将100个数据分成①-⑧组,如下表所示:组号①②③④⑤⑥⑦⑧频数4812241873那么第④组的频率为()A.0.24 B.0.26 C.24 D.266.下列说法正确的是()A.代数式是分式 B.分式中,都扩大3倍,分式的值不变C.分式有意义 D.分式是最简分式7.下列分式的约分中,正确的是()A.=- B.=1-y C.= D.=8.ABC的内角分别为A、B、C,下列能判定ABC是直角三角形的条件是()A.A2B3C B.C2B C.A:B:C3:4:5 D.ABC9.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A., B.,C., D.,10.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A. B.C. D.11.若实数m、n满足等式,且m、n恰好是等腰的两条边的边长,则的周长()A.12 B.10 C.8 D.612.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为()A. B.C. D.二、填空题(每题4分,共24分)13.一次函数与的图象交于点P,且点P的横坐标为1,则关于x,y的方程组的解是______.14.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,若CB=6,那么DE+DB=_________.15.在实数范围内分解因式=___________.16.比较大小:_____1.(填“>”、“=”或“<”)17.在△ABC中,∠A:∠B:∠C=2:3:4,则∠C=_____.18.若数据的方差是,则数据的方差是__________.三、解答题(共78分)19.(8分)如图,已知△ABC,利用尺规,根据下列要求作图(保留作图痕迹,不写作法),并根据要求填空:(1)作∠ABC的平分线BD交AC于点D;(2)作BD的垂直平分线交AB于E,交BC于F;(3)在(1)、(2)条件下,连接DE,线段DE与线段BF的关系为.20.(8分)(尺规作图,保留作图痕迹,不写作法)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连结DF.在所作图中,寻找一对全等三角形,并加以证明.21.(8分)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=____°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.22.(10分)如图在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON=30°,求∠MAN的度数;(3)若∠MON=45°,BM=3,BC=12,求MN的长度.23.(10分)在平面直角坐标系中,B(2,2),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.24.(10分)如图1是3×3的正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,(要求:绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图2中的两幅图就视为同一种图案),请在图3中的四幅图中完成你的设计.25.(12分)如图1,与都是等腰直角三角形,直角边,在同一条直线上,点、分别是斜边、的中点,点为的中点,连接,,,,.(1)观察猜想:图1中,与的数量关系是______,位置关系是______.(2)探究证明:将图1中的绕着点顺时针旋转(),得到图2,与、分别交于点、,请判断(1)中的结论是否成立,若成立,请证明;若不成立,请说明理由.(3)拓展延伸:把绕点任意旋转,若,,请直接列式求出面积的最大值.26.(1)计算;(2)已知4(x+1)2=9,求出x的值.

参考答案一、选择题(每题4分,共48分)1、A【解析】分析:找出原命题的方面即可得出假设的条件.详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A.点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.2、B【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A、符合AAS,能判断两个三角形全等,故该选项不符合题意;B、符合SSA,∠BAD和∠ABC不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C、符合AAS,能判断两个三角形全等,故该选项不符合题意;D、符合SSS,能判断两个三角形全等,故该选项不符合题意;故选择:B.【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.3、C【分析】原式首先提公因式,分解后,再代入求值即可.【详解】∵,,∴.故选:C.【点睛】本题主要考查了提公因式分解因式,关键是正确确定公因式.4、C【解析】根据幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法的运算法则,逐项判断即可.【详解】解:A、∵a3+a3=2a3,∴选项A不符合题意;B、∵a•a3=a4,∴选项B不符合题意;C、∵(a3)2=a6,∴选项C符合题意;D、∵(ab)3=a3b3,∴选项D不符合题意.故选:C.【点睛】本题考查幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法,正确掌握相关运算法则是解题关键.5、A【分析】先根据数据总数和表格中的数据,可以计算得到第④组的频数;再根据频率=频数÷总数进行计算.【详解】解:根据表格中的数据,得第④组的频数为100−(4+8+12+1+18+7+3)=1,所以其频率为1÷100=0.1.故选:A.【点睛】本题考查频数、频率的计算方法.用到的知识点:各组的频数之和等于数据总数;频率=频数÷总数.6、D【解析】根据分式的定义及性质依次判断即可求解.【详解】A.代数式是整式,故错误;B.分式中,都扩大3倍后为,分式的值扩大3倍,故错误;C.当x=±1时,分式无意义,故错误;D.分式是最简分式,正确,故选D.【点睛】此题主要考查分式的定义及性质,解题的关键是熟知分式的特点与性质.7、C【分析】分别根据分式的基本性质进行化简得出即可.【详解】A.=,此选项约分错误;B.不能约分,此选项错误;C.==,此选项正确;D.==,此选项错误;故选:C.【点睛】本题考查了分式的约分,在约分时要注意约掉的是分子分母的公因式.8、D【解析】根据直角三角形的性质即可求解.【详解】若ABC又AB+C=180°∴2∠C=180°,得∠C=90°,故为直角三角形,故选D.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知三角形的内角和.9、D【分析】分别利用平行四边形的判定方法判断得出即可.【详解】A、∵AB∥CD,∴∠DAB+∠ADC=180°,而,∴∠ADC+∠BCD=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故此选项不合题意;D、AB=DC,AD∥BC无法得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.【点睛】此题主要考查了平行四边形的判定,正确把握判定方法是解题关键.10、A【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【详解】由图1将小正方形一边向两方延长,得到两个梯形的高,两条高的和为a−b,即平行四边形的高为a−b,∵两个图中的阴影部分的面积相等,即甲的面积=a2−b2,乙的面积=(a+b)(a−b).即:a2−b2=(a+b)(a−b).所以验证成立的公式为:a2−b2=(a+b)(a−b).故选:A.【点睛】本题主要考查了平方差公式,运用不同方法表示阴影部分面积是解题的关键.本题主要利用面积公式求证明a2−b2=(a+b)(a−b).11、B【分析】先根据绝对值的非负性、二次根式的非负性求出m、n的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得.【详解】由题意得:,解得,设等腰的第三边长为a,恰好是等腰的两条边的边长,,即,又是等腰三角形,,则的周长为,故选:B.【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.12、B【分析】设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有匹,小马有匹,由题意得:,故选:B.【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.二、填空题(每题4分,共24分)13、【解析】把代入,得,得出两直线的交点坐标为(1,2),从而得到方程组的解。【详解】解:把代入,得,则函数和的图象交于点,即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是故答案为:【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14、1【分析】据角平分线上的点到角的两边的距离相等可得,然后求出.【详解】解:,是的平分线,,,,,.故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.15、【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为16、>.【解析】先求出1=,再比较即可.【详解】∵12=9<10,∴>1,故答案为>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.17、80°.【分析】根据∠A:∠B:∠C=2:3:4,可设∠A=2x°,∠B=3x°,∠C=4x°,再根据三角形的内角和定理便可列出方程求出x,由此可求出∠C.【详解】∵∠A:∠B:∠C=2:3:4,∴设∠A=2x°,∠B=3x°,∠C=4x°,由三角形内角和定理可得:2x+3x+4x=180,解得x=20,∴∠C=4x°=80°,故答案为:80°.【点睛】本题考查三角形的内角和定理,掌握方程思想是解决此题的关键.能根据比例关系设未知数可使题做起来更加简单.18、0.7【分析】根据方差的意义与求法将第一组数据中的的值求出来,再代入第二组数据求方差即可.但仔细观察可以发现,第二组数据每一个数都是在第一组数据的基础上加10,其波动情况并没有发生变化,故方差没有变化,也是0.7.【详解】解:根据方差的意义,第二组数据每一个数都是在第一组数据基础上加了10,波动情况没有发生变化,故其方差也为0.7.故答案为:0.7.【点睛】本题主要考查了方差的意义,深刻理解其意义是解答关键.三、解答题(共78分)19、(1)详见解析;(2)详见解析;(3)平行且相等.【解析】(1)先BD平分∠ABC交AC于D;

(2)作EF垂直平分BD,交AB于点E,交BC于点F;

(3)由于EF垂直平分BD,则EB=ED,而BD平分∠EBF,则可判断△BEF为等腰三,角形,所以BE=BF,所以有DE=BF.设EF与BD交点为M,因为EF垂直平方BD,所以BM=DM,∠BMF和∠EMD=90°,DE=BF所以三角形MED≌△BFM,∠DBF=∠EDB,所以DE和BF平行且相等.【详解】解:(1)如图,BD为所作;

(2)如图,EF为所作;

(3)DE和BF平行且相等.【点睛】本题考查了作图-复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20、作图见解析;△BOE≌△BOF;证明见解析【分析】先根据题意作图,再利用三角形全等的判定定理AAS判定△BOE≌△BOF全等即可.【详解】作图如下:△BOE≌△BOF证明:∵BD平分∠ABC,∴∠ABO=∠OBF∵EF⊥BD,∴∠BOE=∠BOF=90°,在△BOE和△BOF中,∴△BOE≌△BOF(ASA)【点睛】本题不但考查了学生对常用的画图方法有所掌握,还要对全等三角形的判定方法能熟练运用.21、(1)140°;(2)∠1+∠2=90°+∠α;(3)∠1=90°+∠2+α.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;【详解】(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α,考点:1.三角形内角和定理;2.三角形的外角性质.22、(1)6;(2)120°(3)1.【分析】(1)根据垂直平分线的性质可得BM=AM,CN=AN,再根据三角形的周长即可求出BC;(2)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN;(3)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN,设MN=x,根据勾股定理列出方程求出x即可.【详解】解:(1)∵AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,∴BM=AM,CN=AN∵△AMN的周长为6,∴AM+AN+MN=6∴BC=BM+MN+CN=AM+MN+AN=6;(2)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=110°∴∠B+∠C=180°-∠BAC=30°∵BM=AM,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=30°∴∠MAN=∠EAF-(∠MAB+∠NAC)=120°;(3)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=131°∴∠B+∠C=180°-∠BAC=41°∵BM=AM=3,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=41°∴∠MAN=∠EAF-(∠MAB+∠NAC)=90°设MN=x,则AN=CN=BC-BM-MN=9-x在Rt△AMN中,MN2=AM2+AN2即x2=32+(9-x)2解得:x=1即MN=1【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质和勾股定理,掌握垂直平分线的性质、等边对等角和用勾股定理解直角三角形是解决此题的关键.23、(1)①见解析;②点C的坐标为(0,﹣4)或(0,4);(2)2【分析】(1)①证明△ABD≌△AOC(SAS),得出∠ABD=∠AOC=90°即可;②存在两种情况:当点D落在第二象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,﹣4);当点D落在第一象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,4);(2)作ON'⊥AB于N',作MN⊥OB于N,此时OM+MN的值最小,由等边三角形的性质和勾股定理求出ON=2即可.【详解】解:(1)①证明:∵△OAB和△ACD是等边三角形,∴BO=AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠BAD=∠OAC,在△ABD和△AOC中,,∴△ABD≌△AOC(SAS),∴∠ABD=∠AOC=90°,∴AB⊥BD;②解:存在两种情况:当点D落在第二象限时,如图1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,﹣4);当点D落在第一象限时,如图1﹣1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,4);综上所述,若△ABD是等腰三角形,点C的坐标为(0,﹣4)或(0,4);(2)解:作ON'⊥AB于N',作MN⊥OB于N,如图2所示:∵△OAB是等边三角形,ON'⊥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论