版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()A.(1,2) B.(2,2) C.(3,2) D.(4,2)2.下列选项中a的值,可以作为命题“a2>4,则a>2”是假命题的反例是()A. B. C. D.3.勿忘草是多年生草本植物,它拥有世界上最小的花粉勿忘草的花粉直径为1.111114米,数据1.111114用科学记数法表示为()A.4115B.4116C.411-5D.411-64.当时,代数式的值是().A.-1 B.1 C.3 D.55.如图,在△ABC中,AC的垂直平分线交AC于点E,交BC于点D,△ABD的周长为16cm,AC为5cm,则△ABC的周长为()A.24cm B.21cm C.20cm D.无法确定6.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm7.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有(
)个
.A.1 B.2 C.3 D.48.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A. B. C. D.不能确定9.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°10.如图,圆柱的底面半径为3cm,圆柱高AB为2cm,BC是底面直径,一只蚂蚁从点A出发沿圆柱表面爬行到点C,则蚂蚁爬行的最短路线长()A.5cm B.8cm C.cm D.cm11.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面处折断,树尖恰好碰到地面,经测量,则树高为().A. B. C. D.12.在阳明山国家森林公园举行中国·阳明山“和”文化旅游节暨杜鹃花会期间,几名同学包租一辆车前去游览,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加游览的学生共有人,则可列方程为()A. B. C. D.二、填空题(每题4分,共24分)13.命题“两直线平行,同位角相等”的逆命题是.14.约分:=_____.15.若实数x,y满足方程组,则x-y=______.16.一件工作,甲独做需小时完成,乙独做需小时完成,则甲、乙两人合作需的小时数是______.17.如图,已知点M(-1,0),点N(5m,3m+2)是直线AB:右侧一点,且满足∠OBM=∠ABN,则点N的坐标是_____.18.已知△ABC是边长为6的等边三角形,过点B作AC的垂线l,垂足为D,点P为直线l上的点,作点A关于CP的对称点Q,当△ABQ是等腰三角形时,PD的长度为___________三、解答题(共78分)19.(8分)解答下列各题(1)如图1,已知OA=OB,数轴上的点A所表示的数为m,且|m+n|=2①点A所表示的数m为;②求代数式n2+m﹣9的值.(2)旅客乘车按规定可以随身携带一定质量的行李,如果超过规定,则需购买行李票,设行李票y(元)是行李质量x(千克)的一次函数,其图象如图2所示.①当旅客需要购买行李票时,求出y与x之间的函数关系式;②如果张老师携带了42千克行李,她是否要购买行李票?如果购买需买多少行李票?20.(8分)如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:,试分别求:(1)当=68和=-4时,的值;(2)当=10时,的值.21.(8分)在中,,,点是上的一点,连接,作交于点.(1)如图1,当时,求证:;(2)如图2,作于点,当时,求证:;(3)在(2)的条件下,若,求的值.22.(10分)如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.23.(10分)化简(1).(2).24.(10分)(1)仔细观察如图图形,利用面积关系写出一个等式:a2+b2=.(2)根据(1)中的等式关系解决问题:已知m+n=4,mn=﹣2,求m2+n2的值.(3)小明根据(1)中的关系式还解决了以下问题:“已知m+=3,求m2+和m3+的值”小明解法:请你仔细理解小明的解法,继续完成:求m5+m﹣5的值25.(12分)新春佳节来临之际,某商铺用1600元购进一款畅销礼盒,由于面市后供不应求,决定再用6000元购进同款礼盒,已知第二次购进的数量是第一次的3倍,但是第二次的单价比第一次贵2元.求第一次与第二次各购进礼盒多少个?26.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨.
参考答案一、选择题(每题4分,共48分)1、C【详解】解:设对称点的坐标是x(x,y)则根据题意有,y=2,故符合题意的点是(3,2),故选C【点睛】本题考查点的坐标,本题属于对点关于直线对称的基本知识的理解和运用.2、C【分析】根据要证明一个命题结论不成立,可以通过举反例的方法来证明一个命题是假命题,然后对选项一一判断,即可得出答案.【详解】解:用来证明命题“若a2>4,则a>2”是假命题的反例可以是:a=-3,∵(-3)2>4,但是a=-3<2,∴当a=-3是证明这个命题是假命题的反例.故选C.【点睛】此题主要考查了利用举反例法证明一个命题是假命题.掌握举反例法是解题的关键.3、D【解析】根据科学记数法的性质以及应用进行表示即可.【详解】故答案为:D.【点睛】本题考查了科学记数法的应用,掌握科学记数法的性质以及应用是解题的关键.4、B【分析】将代入代数式中求值即可.【详解】解:将代入,得原式=故选B.【点睛】此题考查的是求代数式的值,解决此题的关键是将字母的值代入求值即可.5、B【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,
∴AD=DC,
∵△ABD的周长=AB+BD+AD=16,
∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=1.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.6、A【解析】由等腰三角形的两边长分别为6cm和2cm,分别从若2cm为腰长,6cm为底边长与若2cm为底边长,6cm为腰长去分析求解即可求得答案.【详解】若2cm为腰长,6cm为底边长,∵2+2=4<6,不能组成三角形,∴不合题意,舍去;若2cm为底边长,6cm为腰长,则此三角形的周长为:2+6+6=14cm.故选A.【点睛】此题考查了等腰三角形的性质与三角形的三边关系.此题比较简单,注意掌握分类讨论思想的应用.7、C【解析】①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,BD=BC,∠ABD=∠CBD,BE=BA,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∴③正确;④因为BD是△ABC的角平分线,且BA>BC,所以D不可能是AC的中点,则AC≠2CD,故④错误.故选:C.【点睛】此题考查角平分线定理,全等三角形的判定与性质、等腰三角形的性质与判定、三角形内角和定理、三角形的面积关系等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.8、B【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【详解】过P作PF∥BC交AC于F.如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选B.9、A【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,
∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,
即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D=∠A=×30°=15°.
故选A.
【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.10、B【解析】将圆柱体的侧面展开并连接AC.∵圆柱的底面半径为3cm,∴BC=×2•π•3=3π(cm),在Rt△ACB中,AC2=AB2+CB2=4+9π2,∴AC=cm.∴蚂蚁爬行的最短的路线长是cm.∵AB+BC=8<,∴蚁爬行的最短路线A⇒B⇒C,故选B.【点睛】运用了平面展开图,最短路径问题,做此类题目先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.11、D【分析】根据题意画出三角形,用勾股定理求出BC的长,树高就是AC+BC的长.【详解】解:根据题意,如图,画出一个三角形ABC,AC=6m,AB=8m,∵,∴,∴,树高=.故选:D.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解三角形的方法.12、D【分析】设参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发时每名同学分担的车费为:元,根据每个同学比原来少摊了1元钱车费即可得到等量关系.【详解】设参加游览的同学共x人,根据题意得:1.故选:D.【点睛】本题考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.二、填空题(每题4分,共24分)13、同位角相等,两直线平行【详解】逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行【点睛】本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用14、【分析】根据分式的基本性质,约分化简到最简形式即可.【详解】,故答案为:.【点睛】考查了分式的基本性质,注意负号可以提到前面,熟记分式约分的方法是解题关键.15、1【分析】用第一个式子减去第二个式子即可得到,化简可得【详解】解:①-②得:∴故答案为:1.【点睛】本题考查二元一次方程组,重点是整体的思想,掌握解二元一次方程组的方法为解题关键.16、【分析】设总工作量为1,根据甲独做a小时完成,乙独做b小时完成,可以表示出两人每小时完成的工作量,进而得出甲、乙合做全部工作所需时间.【详解】解:∵一件工作,甲独做x小时完成,乙独做y小时完成,∴甲每小时完成总工作量的:,乙每小时完成总工作量的:∴甲、乙合做全部工作需:故填:.【点睛】此题考查了列代数式,解决问题的关键是读懂题意,根据关键描述语,找到所求的量的等量关系,当总工作量未知时,可设总工作量为1.17、【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,
作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,
∴∠BOP=∠BPQ=∠PRQ=90°,
∴∠BPO=∠PQR,
∵OA=OB=4,
∴∠OBA=∠OAB=45°,
∵M(-1,0),
∴OP=OM=1,
∴BP=BM,
∴∠OBP=∠OBM=∠ABN,
∴∠PBQ=∠OBA=45°,
∴PB=PQ,
∴△OBP≌△RPQ(AAS),
∴RQ=OP=1,PR=OB=4,
∴OR=5,
∴Q(5,1),∴直线BN的解析式为y=−x+4,将N(5m,3m+2)代入y=−x+4,得3m+2=﹣×5m+4解得m=,∴N.故答案为:【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.18、、、或【分析】先根据题意作图,再分①当②当③当④当时四种情况根据等边三角形的性质及对称性分别求解.【详解】∵点A、Q关于CP对称,∴CA=CQ,∴Q在以C为圆心,CA长为半径的圆上∵△ABQ是等腰三角形,∴Q也在分别以A、B为圆心,AB长为半径的两个圆上和AB的中垂线上,如图①,这样的点Q有4个。(1)当时,如图②,过点做∵点A、Q关于CP对称,∴,又∵,∴,∴∵∠OCD=30°,BD⊥AC∴,,∴∴∴(2)当时,如图③同理可得,∴∴(3)当时,如图④是等边三角形,,∴(4)当时,如图⑤是等边三角形,点与点B重合,∴故填:、、或【点睛】此题主要考查等边三角形的性质及对称性的应用,解题的关键是熟知等边三角形的性质及对称性,再根据题意分情况讨论.三、解答题(共78分)19、(1)①﹣;②3或﹣5;(2)①y=x﹣5;②她要购买行李票,需买2元的行李票.【分析】(1)①根据勾股定理可以求得OB的值,再根据OA=OB,即可得到m的值;②根据m的值和|m+n|=2,可以得到n的值,从而可以得到n2+m﹣9的值;(2)①根据函数图象利用待定系数法可以得到y与x的函数关系式;②根据①中的函数关系式,将y=0,x=42分别代入计算,即可解答本题.【详解】解:(1)①由图1可知,OA=OB,∵OB==,∴OA=,∴点A表示的数m为﹣,故答案为:﹣;②∵|m+n|=2,m=﹣,∴m+n=±2,m=﹣,当m+n=2时,n=2+,则n2+m﹣9=(2+)2+(﹣)﹣9=9+4+(﹣)﹣9=3;当m+n=﹣2时,n=﹣2+,则n2+m﹣9=(﹣2+)2+(﹣)﹣9=9﹣4+(﹣)﹣9=﹣5;由上可得,n2+m﹣9的值是3或﹣5;(2)①当旅客需要购买行李票时,设y与x之间的函数关系式为y=kx+b,代入(60,5),(90,10)得:,解得:,∴当旅客需要购买行李票时,y与x之间的函数关系式是y=x﹣5;②当y=0时,0=x﹣5,得x=30,当x=42时,y=×42﹣5=2,故她要购买行李票,需买2元的行李票.【点睛】本题考查勾股定理与无理数、二次根式的混合运算以及一次函数的应用,解答本题的关键是准确识别函数图象,熟练掌握待定系数法.20、(1)当时,=20;当时,=;(2)当时,.【分析】(1)将f=68和f=-4分别代入关系式进行求解即可;(2)把c=10代入关系式进行求解即可.【详解】(1)当时,=20;当时,=;(2)当时,,解得.21、(1)见解析;(2)见解析;(3)1.【分析】(1)利用三角形外角的性质证得,从而证得,即可证明结论;(2)利用三角形外角的性质证得,继而求得,从而证得结论;(3)作出如图辅助线,利用证得,利用等腰三角形三线合一的性质求得,用面积法求得,从而证得结论.【详解】(1)∵,∴,∵,,,∴,∵,∴,∴,∵,∴;(2)∵,,∴,∵,,,∴,∵,∴,∵,∴,∵,∴,∵,,∴,∵,∴,∴,∵,∴;(3)过点作交延长线于点,过点作于点,过点作于点,∴,∵,,∴,∵,∴,∴,∵,,∴,∴,∵,∴,∵,∴,∴,∴,∵,∴,∵,,∴,∵,∴,∴【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)∠BED=2∠BFD;(2)∠BED=3∠BFD,见解析;(3)∠BED=n∠BFD.【分析】(1)过点E,F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,根据平行线的性质得到∠ABF=∠BFH,∠CDF=∠DFH,从而得出∠BFD=∠CDF+∠ABF,同理可得出∠BED=∠ABE+∠CDE,最后可得出∠BED=2∠BFD;(2)同(1)可知∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,再根据∠ABF=∠ABE,∠CDF=∠CDE即可得到结论;(3)同(1)(2)的方法即可得出∠F与∠E的等量关系.【详解】解:(1)过点E、F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=2∠BFD.故答案为:∠BED=2∠BFD;(2)∠BED=3∠BFD.证明如下:同(1)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)同(1)(2)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=n∠BFD.【点睛】本题主要考查了平行线的性质和角平分线、n等分线的运用,解决问题的关键是作辅助线构造内错角,依据平行线的性质进行推导计算,解题时注意类比思想和整体思想的运用.23、(1)x+1;(2).【分析】(1)先算括号内的分式的减法,再算乘法,因式分解后约分可以解答本题;(2)先算括号内的分式的加法,再算乘法,因式分解后约分可以解答本题.【详解】解:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民族大团结教学反思
- 小班游戏教案五篇
- j q x 课件教学课件
- 我运动我健康作文(汇编15篇)
- 公司、项目部、各个班组三级安全培训试题加解析答案可打印
- 承包商入厂安全培训试题及完整答案(名校卷)
- 新版车间安全培训试题答案审定版
- 项目部安全培训试题有完整答案
- 公司厂级员工安全培训试题含答案解析
- 新员工入职前安全培训试题附完整答案【历年真题】
- 房屋整改方案
- 2024-2030年中国地铁广告行业市场现状供需分析及投资评估规划分析研究报告
- TBIA 7-2022 骨科疾病诊疗数据集-机器人辅助全膝关节置换
- 职业技术学院《老年心理学基础》课程标准
- 2024至2030年中国医疗卫生行业分析及发展预测报告
- 凤兮凰兮(2022年山东枣庄中考语文试卷记叙文阅读题及答案)
- 员工入职审批表
- 现代设施农业技术与应用考核试卷
- 电动飞机推进电机发展及关键技术综述
- 2024-2030年房屋建筑工程行业发展分析及投资战略研究报告
- 2024年秋新华师大版数学七年级上册 1.11.2 科学计数法 教学课件
评论
0/150
提交评论