计量经济学第三版课后习题答案_第1页
计量经济学第三版课后习题答案_第2页
计量经济学第三版课后习题答案_第3页
计量经济学第三版课后习题答案_第4页
计量经济学第三版课后习题答案_第5页
已阅读5页,还剩185页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计量经济学第三版课后习题答案第二章简单线性回归模型2.1(1)①首先分析人均寿命与人均GDP的数量关系,用Eviews分析:DependentVariable:YMethod:LeastSquaresDate:12/23/15Time:Sample:122Includedobservations:22VariableCoefficientStd.Errort-StatisticProb.

C56.647941.96082028.889920.0000X10.1283600.0272424.7118340.0001R-squared0.526082

Meandependentvar62.50000AdjustedR-squared0.502386

S.D.dependentvar10.08889S.E.ofregression7.116881

Akaikeinfocriterion6.849324Sumsquaredresid1013.000

Schwarzcriterion6.948510Loglikelihood-73.34257

Hannan-Quinncriter.6.872689F-statistic22.20138

Durbin-Watsonstat0.629074Prob(F-statistic)0.000134有上可知,关系式为y=56.64794+0.128360x1②关于人均寿命与成人识字率的关系,用Eviews分析如下:DependentVariable:YMethod:LeastSquaresProb(F-statistic)0.000103由上可知,关系式为y=31.79956+0.387276x3(2)①关于人均寿命与人均GDP模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。对于回归系数的t检验:t(β1)=4.711834>t0.025(20)=2.086,对斜率系数的显著性检验表明,人均GDP对人均寿命有显著影响。②关于人均寿命与成人识字率模型,由上可知,可决系数为0.716825,说明所建模型整体上对样本数据拟合较好。对于回归系数的t检验:t(β2)=7.115308>t0.025(20)=2.086,对斜率系数的显著性检验表明,成人识字率对人均寿命有显著影响。③关于人均寿命与一岁儿童疫苗的模型,由上可知,可决系数为0.537929,说明所建模型整体上对样本数据拟合较好。对于回归系数的t检验:t(β3)=4.825285>t0.025(20)=2.086,对斜率系数的显著性检验表明,一岁儿童疫苗接种率对人均寿命有显著影响。2.2(1)①对于浙江省预算收入与全省生产总值的模型,用Eviews分析结果如下:DependentVariable:YMethod:LeastSquaresDate:12/23/Sample(adjusted):133Includedobservations:33afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.

X0.1761240.00407243.256390.0000C-154.306339.08196-3.9482740.0004R-squared0.983702

Meandependentvar902.5148AdjustedR-squared0.983177

S.D.dependentvar1351.009S.E.ofregression175.2325

Akaikeinfocriterion13.22880Sumsquaredresid951899.7

Schwarzcriterion13.31949Loglikelihood-216.2751

Hannan-Quinncriter.13.25931F-statistic1871.115

Durbin-Watsonstat0.100021Prob(F-statistic)0.000000②由上可知,模型的参数:斜率系数0.176124,截距为—154.3063③关于浙江省财政预算收入与全省生产总值的模型,检验模型的显著性:1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好。2)对于回归系数的t检验:t(β2)=43.25639>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。④用规范形式写出检验结果如下:Y=0.176124X—154.3063(0.004072)(39.08196)t=(43.25639)(-3.948274)R2=0.983702F=1871.115n=33⑤经济意义是:全省生产总值每增加1亿元,财政预算总收入增加0.176124亿元。(2)当x=32000时,①进行点预测,由上可知Y=0.176124X—154.3063,代入可得:Y=Y=0.176124*32000—154.3063=5481.6617②进行区间预测:先由Eviews分析:XY

Mean

6000.441

902.5148

Median

2689.280

209.3900

Maximum

27722.31

4895.410

Minimum

123.7200

25.87000

Std.Dev.

7608.021

1351.009

Skewness

1.432519

1.663108

Kurtosis

4.010515

4.590432

Jarque-Bera

12.69068

18.69063

Probability

0.001755

0.000087

Sum

198014.5

29782.99

SumSq.Dev.

1.85E+09

58407195

Observations

33

33由上表可知,∑x2=∑(Xi—X)2=δ2x(n—1)=

7608.0212x(33—1)=1852223.473(Xf—X)2=(32000—

6000.441)2=675977068.2当Xf=32000时,将相关数据代入计算得到:5481.6617—2.0395x175.2325x√1/33+1852223.473/675977068.2≤Yf≤5481.6617+2.0395x175.2325x√1/33+1852223.473/675977068.2即Yf的置信区间为(5481.6617—64.9649,5481.6617+64.9649)(3)对于浙江省预算收入对数与全省生产总值对数的模型,由Eviews分析结果如下:DependentVariable:LNYMethod:LeastSquaresDate:12/23/1Sample(adjusted):133Includedobservations:33afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.

LNX0.9802750.03429628.582680.0000C-1.9182890.268213-7.1521210.0000R-squared0.963442

Meandependentvar5.573120AdjustedR-squared0.962263

S.D.dependentvar1.684189S.E.ofregression0.327172

Akaikeinfocriterion0.662028Sumsquaredresid3.318281

Schwarzcriterion0.752726Loglikelihood-8.923468

Hannan-Quinncriter.0.692545F-statistic816.9699

Durbin-Watsonstat0.096208Prob(F-statistic)0.000000①模型方程为:lnY=0.980275lnX-1.918289②由上可知,模型的参数:斜率系数为0.980275,截距为-1.918289③关于浙江省财政预算收入与全省生产总值的模型,检验其显著性:1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好。2)对于回归系数的t检验:t(β2)=28.58268>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。④经济意义:全省生产总值每增长1%,财政预算总收入增长0.980275%2.4(1)对建筑面积与建造单位成本模型,用Eviews分析结果如下:DependentVariable:YMethod:LeastSquaresDate:12/23/15Time:Sample:112Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.

X-64.184004.809828-13.344340.0000C1845.47519.2644695.796880.0000R-squared0.946829

Meandependentvar1619.333AdjustedR-squared0.941512

S.D.dependentvar131.2252S.E.ofregression31.73600

Akaikeinfocriterion9.903792Sumsquaredresid10071.74

Schwarzcriterion9.984610Loglikelihood-57.42275

Hannan-Quinncriter.9.873871F-statistic178.0715

Durbin-Watsonstat1.172407Prob(F-statistic)0.000000由上可得:建筑面积与建造成本的回归方程为:Y=1845.475--64.18400X(2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。(3)①首先进行点预测,由Y=1845.475--64.18400X得,当x=4.5,y=1556.647②再进行区间估计:用Eviews分析:YX

Mean

1619.333

3.523333

Median

1630.000

3.715000

Maximum

1860.000

6.230000

Minimum

1419.000

0.600000

Std.Dev.

131.2252

1.989419

Skewness

0.003403-0.060130

Kurtosis

2.346511

1.664917

Jarque-Bera

0.213547

0.898454

Probability

0.898729

0.638121

Sum

19432.00

42.28000

SumSq.Dev.

189420.7

43.53567

Observations

12

12由上表可知,∑x2=∑(Xi—X)2=δ2x(n—1)=

1.9894192x(12—1)=43.5357(Xf—X)2=(4.5—

3.523333)2=0.95387843当Xf=4.5时,将相关数据代入计算得到:1556.647—2.228x31.73600x√1/12+43.5357/0.95387843≤Yf≤1556.647+2.228x31.73600x√1/12+43.5357/0.95387843即Yf的置信区间为(1556.647—478.1231,1556.647+478.1231)3.1(1)①对百户拥有家用汽车量计量经济模型,用Eviews分析结果如下:DependentVariable:YMethod:LeastSquaresDate:12/23/1Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.

X25.9968651.4060584.2650200.0002X3-0.5240270.179280-2.9229500.0069X4-2.2656800.518837-4.3668420.0002C246.854051.975004.7494760.0001R-squared0.666062

Meandependentvar16.77355AdjustedR-squared0.628957

S.D.dependentvar8.252535S.E.ofregression5.026889

Akaikeinfocriterion6.187394Sumsquaredresid682.2795

Schwarzcriterion6.372424Loglikelihood-91.90460

Hannan-Quinncriter.6.247709F-statistic17.95108

Durbin-Watsonstat1.147253Prob(F-statistic)0.000001

②得到模型得:Y=246.8540+5.996865X2-0.524027X3-2.265680X4③对模型进行检验:可决系数是0.666062,修正的可决系数为0.628957,说明模型对样本拟合较好F检验,F=17.95108>F(3,27)=3.65,回归方程显著。3)t检验,t统计量分别为4.749476,4.265020,-2.922950,-4.366842,均大于t(27)=2.0518,所以这些系数都是显著的。④依据:可决系数越大,说明拟合程度越好F的值与临界值比较,若大于临界值,则否定原假设,回归方程是显著的;若小于临界值,则接受原假设,回归方程不显著。t的值与临界值比较,若大于临界值,则否定原假设,系数都是显著的;若小于临界值,则接受原假设,系数不显著。(2)经济意义:人均GDP增加1万元,百户拥有家用汽车增加5.996865辆,城镇人口比重增加1个百分点,百户拥有家用汽车减少0.524027辆,交通工具消费价格指数每上升1,百户拥有家用汽车减少2.265680辆。(3)用EViews分析得:DependentVariable:YMethod:LeastSquaresDate:12/23/15Time:Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.

X25.1356701.0102705.0834650.0000LNX3-22.810056.771820-3.3683780.0023LNX4-230.848149.46791-4.6666240.0001C1148.758228.29175.0319740.0000R-squared0.691952

Meandependentvar16.77355AdjustedR-squared0.657725

S.D.dependentvar8.252535S.E.ofregression4.828088

Akaikeinfocriterion6.106692Sumsquaredresid629.3818

Schwarzcriterion6.291723Loglikelihood-90.65373

Hannan-Quinncriter.6.167008F-statistic20.21624

Durbin-Watsonstat1.150090Prob(F-statistic)0.000000模型方程为:Y=5.135670X2-22.81005LNX3-230.8481LNX4+1148.758此分析得出的可决系数为0.691952>0.666062,拟合程度得到了提高,可这样改进。3.2(1)对出口货物总额计量经济模型,用Eviews分析结果如下::DependentVariable:YMethod:LeastSquaresDate:12/24/15Time:Sample:19942011Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

X20.1354740.01279910.584540.0000X318.853489.7761811.9285120.0729C-18231.588638.216-2.1105730.0520R-squared0.985838

Meandependentvar6619.191AdjustedR-squared0.983950

S.D.dependentvar5767.152S.E.ofregression730.6306

Akaikeinfocriterion16.17670Sumsquaredresid8007316.

Schwarzcriterion16.32510Loglikelihood-142.5903

Hannan-Quinncriter.16.19717F-statistic522.0976

Durbin-Watsonstat1.173432Prob(F-statistic)0.000000①由上可知,模型为:Y=0.135474X2+18.85348X3-18231.58②对模型进行检验: 1)可决系数是0.985838,修正的可决系数为0.983950,说明模型对样本拟合较好2)F检验,F=522.0976>F(2,15)=4.77,回归方程显著3)t检验,t统计量分别为X2的系数对应t值为10.58454,大于t(15)=2.131,系数是显著的,X3的系数对应t值为1.928512,小于t(15)=2.131,说明此系数是不显著的。(2)对于对数模型,用Eviews分析结果如下:DependentVariable:LNYMethod:LeastSquaresDate:12/24/15Sample:19942011Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

LNX21.5642210.08898817.577890.0000LNX31.7606950.6821152.5812290.0209C-20.520485.432487-3.7773630.0018R-squared0.986295

Meandependentvar8.400112AdjustedR-squared0.984467

S.D.dependentvar0.941530S.E.ofregression0.117343

Akaikeinfocriterion-1.296424Sumsquaredresid0.206540

Schwarzcriterion-1.148029Loglikelihood14.66782

Hannan-Quinncriter.-1.275962F-statistic539.7364

Durbin-Watsonstat0.686656Prob(F-statistic)0.000000①由上可知,模型为:LNY=-20.52048+1.564221LNX2+1.760695LNX3②对模型进行检验:1)可决系数是0.986295,修正的可决系数为0.984467,说明模型对样本拟合较好。2)F检验,F=539.7364>F(2,15)=4.77,回归方程显著。3)t检验,t统计量分别为-3.777363,17.57789,2.581229,均大于t(15)=2.131,所以这些系数都是显著的。(3)①(1)式中的经济意义:工业增加1亿元,出口货物总额增加0.135474亿元,人民币汇率增加1,出口货物总额增加18.85348亿元。②(2)式中的经济意义:工业增加额每增加1%,出口货物总额增加1.564221%,人民币汇率每增加1%,出口货物总额增加1.760695%3.3(1)对家庭书刊消费对家庭月平均收入和户主受教育年数计量模型,由Eviews分析结果如下:DependentVariable:YMethod:LeastSquaresDate:12/24/15Time:Sample:118Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

X0.0864500.0293632.9441860.0101T52.370315.20216710.067020.0000C-50.0163849.46026-1.0112440.3279R-squared0.951235

Meandependentvar755.1222AdjustedR-squared0.944732

S.D.dependentvar258.7206S.E.ofregression60.82273

Akaikeinfocriterion11.20482Sumsquaredresid55491.07

Schwarzcriterion11.35321Loglikelihood-97.84334

Hannan-Quinncriter.11.22528F-statistic146.2974

Durbin-Watsonstat2.605783Prob(F-statistic)0.000000①模型为:Y=0.086450X+52.37031T-50.01638②对模型进行检验:1)可决系数是0.951235,修正的可决系数为0.944732,说明模型对样本拟合较好。2)F检验,F=539.7364>F(2,15)=4.77,回归方程显著。3)t检验,t统计量分别为2.944186,10.06702,均大于t(15)=2.131,所以这些系数都是显著的。③经济意义:家庭月平均收入增加1元,家庭书刊年消费支出增加0.086450元,户主受教育年数增加1年,家庭书刊年消费支出增加52.37031元。(2)用Eviews分析:①DependentVariable:YMethod:LeastSquaresDate:12/24/15Time:Sample:118Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

T63.016764.54858113.854160.0000C-11.5817158.02290-0.1996060.8443R-squared0.923054

Meandependentvar755.1222AdjustedR-squared0.918245

S.D.dependentvar258.7206S.E.ofregression73.97565

Akaikeinfocriterion11.54979Sumsquaredresid87558.36

Schwarzcriterion11.64872Loglikelihood-101.9481

Hannan-Quinncriter.11.56343F-statistic191.9377

Durbin-Watsonstat2.134043Prob(F-statistic)0.000000②DependentVariable:XMethod:LeastSquaresDate:12/24/15Time:Sample:118Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

T123.151631.841503.8676440.0014C444.5888406.17861.0945650.2899R-squared0.483182

Meandependentvar1942.933AdjustedR-squared0.450881

S.D.dependentvar698.8325S.E.ofregression517.8529

Akaikeinfocriterion15.44170Sumsquaredresid4290746.

Schwarzcriterion15.54063Loglikelihood-136.9753

Hannan-Quinncriter.15.45534F-statistic14.95867

Durbin-Watsonstat1.052251Prob(F-statistic)0.001364以上分别是y与T,X与T的一元回归模型分别是:Y=63.01676T-11.58171X=123.1516T+444.5888(3)对残差进行模型分析,用Eviews分析结果如下:DependentVariable:E1Method:LeastSquaresDate:12/24/15Sample:118Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

E20.0864500.0284313.0407420.0078C3.96E-1413.880832.85E-151.0000R-squared0.366239

Meandependentvar2.30E-14AdjustedR-squared0.326629

S.D.dependentvar71.76693S.E.ofregression58.89136

Akaikeinfocriterion11.09370Sumsquaredresid55491.07

Schwarzcriterion11.19264Loglikelihood-97.84334

Hannan-Quinncriter.11.10735F-statistic9.246111

Durbin-Watsonstat2.605783Prob(F-statistic)0.007788模型为:E1=0.086450E2+3.96e-14参数:斜率系数α为0.086450,截距为3.96e-14(3)由上可知,β2与α2的系数是一样的。回归系数与被解释变量的残差系数是一样的,它们的变化规律是一致的。3.6(1)预期的符号是X1,X2,X3,X4,X5的符号为正,X6的符号为负(2)根据Eviews分析得到数据如下:DependentVariable:YMethod:LeastSquaresDate:12/24/15Time:Sample:19942011Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

X20.0013820.0011021.2543300.2336X30.0019420.0039600.4905010.6326X4-3.5790903.559949-1.0053770.3346X50.0047910.0050340.9516710.3600X60.0455420.0955520.4766210.6422C-13.7773215.73366-0.8756590.3984R-squared0.994869

Meandependentvar12.76667AdjustedR-squared0.992731

S.D.dependentvar9.746631S.E.ofregression0.830963

Akaikeinfocriterion2.728738Sumsquaredresid8.285993

Schwarzcriterion3.025529Loglikelihood-18.55865

Hannan-Quinncriter.2.769662F-statistic465.3617

Durbin-Watsonstat1.553294Prob(F-statistic)0.000000①与预期不相符。②评价:可决系数为0.994869,数据相当大,可以认为拟合程度很好。F检验,F=465.3617>F(5.12)=3,89,回归方程显著T检验,X1,X2,X3,X4,X5,X6系数对应的t值分别为:1.254330,0.490501,-1.005377,0.951671,0.476621,均小于t(12)=2.179,所以所得系数都是不显著的。(3)根据Eviews分析得到数据如下:DependentVariable:YMethod:LeastSquaresDate:12/24/15Sample:19942011Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.

X50.0010322.20E-0546.799460.0000X6-0.0549650.031184-1.7625810.0983C4.2054813.3356021.2607860.2266R-squared0.993601

Meandependentvar12.76667AdjustedR-squared0.992748

S.D.dependentvar9.746631S.E.ofregression0.830018

Akaikeinfocriterion2.616274Sumsquaredresid10.33396

Schwarzcriterion2.764669Loglikelihood-20.54646

Hannan-Quinncriter.2.636736F-statistic1164.567

Durbin-Watsonstat1.341880Prob(F-statistic)0.000000①得到模型的方程为:Y=0.001032X5-0.054965X6+4.205481②评价:可决系数为0.993601,数据相当大,可以认为拟合程度很好。F检验,F=1164.567>F(5.12)=3,89,回归方程显著T检验,X5系数对应的t值为46.79946,大于t(12)=2.179,所以系数是显著的,即人均GDP对年底存款余额有显著影响。X6系数对应的t值为-1.762581,小于t(12)=2.179,所以系数是不显著的。4.3(1)根据Eviews分析得到数据如下:DependentVariable:LNYMethod:LeastSquaresDate:12/24/1Sample:19852011Includedobservations:27VariableCoefficientStd.Errort-StatisticProb.

LNGDP1.3385330.08861015.105820.0000LNCPI-0.4217910.233295-1.8079750.0832C-3.1114860.463010-6.7201260.0000R-squared0.988051

Meandependentvar9.484710AdjustedR-squared0.987055

S.D.dependentvar1.425517S.E.ofregression0.162189

Akaikeinfocriterion-0.695670Sumsquaredresid0.631326

Schwarzcriterion-0.551689Loglikelihood12.39155

Hannan-Quinncriter.-0.652857F-statistic992.2582

Durbin-Watsonstat0.522613Prob(F-statistic)0.000000得到的模型方程为:LNY=1.338533LNGDPt-0.421791LNCPIt-3.111486(2)该模型的可决系数为0.988051,可决系数很高,F检验值为992.2582,明显显著。但当α=0.05时,t(24)=2.064,LNCPI的系数不显著,可能存在多重共线性。②得到相关系数矩阵如下:LNYLNGDPLNCPILNY

1.000000

0.993189

0.935116LNGDP

0.993189

1.000000

0.953740LNCPI

0.935116

0.953740

1.000000LNGDP,LNCPI之间的相关系数很高,证实确实存在多重共线性。(3)由Eviews得:a)DependentVariable:LNYMethod:LeastSquaresDate:12/24/15Sample:19852011Includedobservations:27VariableCoefficientStd.Errort-StatisticProb.

LNGDP1.1857390.02782242.619330.0000C-3.7506700.312255-12.011560.0000R-squared0.986423

Meandependentvar9.484710AdjustedR-squared0.985880

S.D.dependentvar1.425517S.E.ofregression0.169389

Akaikeinfocriterion-0.642056Sumsquaredresid0.717312

Schwarzcriterion-0.546068Loglikelihood10.66776

Hannan-Quinncriter.-0.613514F-statistic1816.407

Durbin-Watsonstat0.471111Prob(F-statistic)0.000000b)DependentVariable:LNYMethod:LeastSquaresDate:12/24/15Time:1Sample:19852011Includedobservations:27VariableCoefficientStd.Errort-StatisticProb.

LNCPI2.9392950.22275613.195110.0000C-6.8545351.242243-5.5178710.0000R-squared0.874442

Meandependentvar9.484710AdjustedR-squared0.869419

S.D.dependentvar1.425517S.E.ofregression0.515124

Akaikeinfocriterion1.582368Sumsquaredresid6.633810

Schwarzcriterion1.678356Loglikelihood-19.36196

Hannan-Quinncriter.1.610910F-statistic174.1108

Durbin-Watsonstat0.137042Prob(F-statistic)0.000000c)DependentVariable:LNGDPMethod:LeastSquaresDate:12/24/1Sample:19852011Includedobservations:27VariableCoefficientStd.Errort-StatisticProb.

LNCPI2.5110220.15830215.862270.0000C-2.7963810.882798-3.1676340.0040R-squared0.909621

Meandependentvar11.16214AdjustedR-squared0.906005

S.D.dependentvar1.194029S.E.ofregression0.366072

Akaikeinfocriterion0.899213Sumsquaredresid3.350216

Schwarzcriterion0.995201Loglikelihood-10.13938

Hannan-Quinncriter.0.927755F-statistic251.6117

Durbin-Watsonstat0.099623Prob(F-statistic)0.000000①得到的回归方程分别为1)LNY=1.185739LNGDPt-3.7506702)LNY=2.939295LNCPIt-6.8545353)LNGDPt=2.511022LNCPIt-2.796381②对多重共线性的认识:单方程拟合效果都很好,回归系数显著,判定系数较高,GDP和CPI对进口的显著的单一影响,在这两个变量同时引入模型时影响方向发生了改变,这只有通过相关系数的分析才能发现。(4)建议:如果仅仅是作预测,可以不在意这种多重共线性,但如果是进行结构分析,还是应该引起注意的。4.4(1)按照设计的理论模型,由Eviews分析得:DependentVariable:CZSRMethod:LeastSquaresDate:12/24/1Sample:19852011Includedobservations:27VariableCoefficientStd.Errort-StatisticProb.

CZZC0.0901140.0443672.0311290.0540GDP-0.0253340.005069-4.9980360.0000SSZE1.1768940.06216218.932710.0000C-221.8540130.6532-1.6980380.1030R-squared0.999857

Meandependentvar22572.56AdjustedR-squared0.999838

S.D.dependentvar27739.49S.E.ofregression353.0540

Akaikeinfocriterion14.70707Sumsquaredresid2866884.

Schwarzcriterion14.89905Loglikelihood-194.5455

Hannan-Quinncriter.14.76416F-statistic53493.93

Durbin-Watsonstat1.458128Prob(F-statistic)0.000000从回归结果可见,可决系数为0.999857,校正的可决系数为0.999838,模型拟合的很好。F的统计量为53493.93,说明在α=0.05,水平下,回归方程回归方程整体上是显著的。但是t检验结果表明,国内生产总值对财政收入的影响显著,但回归系数的符号为负,与实际不符合。由此可得知,该方程可能存在多重共线性。(2)得到相关系数矩阵如下:CZSRCZZCGDPSSZECZSR

1.000000

0.998729

0.992838

0.999832CZZC

0.998729

1.000000

0.992536

0.998575GDP

0.992838

0.992536

1.000000

0.994370SSZE

0.999832

0.998575

0.994370

1.000000由上表可知,CZZC与GDP,CZZC与SSZE,GDP与SSZE之间的相关系数都非常高,说明确实存在多重共线性。(3)做辅助回归被解释变量可决系数方差扩大因子CZZC0.997168353GDP0.98883390SSZE0.997862468方差扩大因子均大于10,存在严重多重共线性。并且通过以上分析,两两被解释变量之间相关性都很高。(4)解决方式:分别作出财政收入与财政支出、国内生产总值、税收总额之间的一元回归。5.2(1)①用图形法检验绘制e2的散点图,用Eviews分析如下:由上图可知,模型可能存在异方差,Goldfeld-Quanadt检验1)定义区间为1-7时,由软件分析得:DependentVariable:YMethod:LeastSquaresDate:12/24Sample:17Includedobservations:7VariableCoefficientStd.Errort-StatisticProb.

T35.206644.9014927.1828430.0020X0.1099490.0619651.7743800.1507C77.1258882.328440.9368070.4019R-squared0.943099

Meandependentvar565.6857AdjustedR-squared0.914649

S.D.dependentvar108.2755S.E.ofregression31.63265

Akaikeinfocriterion10.04378Sumsquaredresid4002.499

Schwarzcriterion10.02060Loglikelihood-32.15324

Hannan-Quinncriter.9.757267F-statistic33.14880

Durbin-Watsonstat1.426262Prob(F-statistic)0.003238得∑e1i2=4002.4992)定义区间为12-18时,由软件分析得:DependentVariable:YMethod:LeastSquaresDate:12/24/15Time:1Sample:1218Includedobservations:7VariableCoefficientStd.Errort-StatisticProb.

T52.405886.9233787.5694090.0016X0.0686890.0537631.2776350.2705C-8.78926579.92542-0.1099680.9177R-squared0.984688

Meandependentvar887.6143AdjustedR-squared0.977032

S.D.dependentvar274.4148S.E.ofregression41.58810

Akaikeinfocriterion10.59103Sumsquaredresid6918.280

Schwarzcriterion10.56785Loglikelihood-34.06861

Hannan-Quinncriter.10.30451F-statistic128.6166

Durbin-Watsonstat2.390329Prob(F-statistic)0.000234得∑e2i2=6918.2803)根据Goldfeld-Quanadt检验,F统计量为:F=∑e2i2/∑e1i2=6918.280/4002.499=1.7285在α=0.05水平下,分子分母的自由度均为4,查分布表得临界值F0.05(4,4)=6.39,因为F=1.7285<F0.05(4,4)=6.39,所以接受原假设,此检验表明模型不存在异方差。(2)存在异方差,估计参数的方法:①可以对模型进行变换②使用加权最小二乘法进行计算,得出模型方程,并对其进行相关检验③对模型进行对数变换,进行分析(3)评价:3.3所得结论是可以相信的,随机扰动项之间不存在异方差。回归方程是显著的。5.3(1)由Eviews软件分析得:DependentVariable:YMethod:LeastSquaresDate:12/24Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.

X1.2442810.07903215.744110.0000C242.4488291.19400.8326020.4119R-squared0.895260

Meandependentvar4443.526AdjustedR-squared0.891649

S.D.dependentvar1972.072S.E.ofregression649.1426

Akaikeinfocriterion15.85152Sumsquaredresid12220196

Schwarzcriterion15.94404Loglikelihood-243.6986

Hannan-Quinncriter.15.88168F-statistic247.8769

Durbin-Watsonstat1.078581Prob(F-statistic)0.000000由上表可知,2007年我国农村居民家庭人均消费支出(x)对人均纯收入(y)的模型为:Y=1.244281X+242.4488(2)①由图形法检验由上图可知,模型可能存在异方差。②Goldfeld-Quanadt检验1)定义区间为1-12时,由软件分析得:DependentVariable:Y1Method:LeastSquaresDate:12/24/15Time:Sample:112Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.

X11.4852960.5003862.9682970.0141C-550.54921220.063-0.4512470.6614R-squared0.468390

Meandependentvar3052.950AdjustedR-squared0.415229

S.D.dependentvar550.5148S.E.ofregression420.9803

Akaikeinfocriterion15.07406Sumsquaredresid1772245.

Schwarzcriterion15.15488Loglikelihood-88.44437

Hannan-Quinncriter.15.04414F-statistic8.810789

Durbin-Watsonstat2.354167Prob(F-statistic)0.014087得∑e1i2=1772245.2)定义区间为20-31时,由软件分析得:DependentVariable:Y1Method:LeastSquaresDate:12/24/15Sample:2031Includedobservations:12VariableCoefficientStd.Errort-StatisticProb.

X11.0869400.1488637.3016230.0000C1173.307733.25201.6001410.1407R-squared0.842056

Meandependentvar6188.329AdjustedR-squared0.826262

S.D.dependentvar2133.692S.E.ofregression889.3633

Akaikeinfocriterion16.56990Sumsquaredresid7909670.

Schwarzcriterion16.65072Loglikelihood-97.41940

Hannan-Quinncriter.16.53998F-statistic53.31370

Durbin-Watsonstat2.339767Prob(F-statistic)0.000026得∑e2i2=7909670.3)根据Goldfeld-Quanadt检验,F统计量为:F=∑e2i2/∑e1i2=7909670./1772245=4.4631在α=0.05水平下,分子分母的自由度均为10,查分布表得临界值F0.05(10,10)=2.98,因为F=4.4631>F0.05(10,10)=2.98,所以拒绝原假设,此检验表明模型存在异方差。(3)1)采用WLS法估计过程中,①用权数w1=1/X,建立回归得:DependentVariable:YMethod:LeastSquaresDate:12/24/15Time:1Sample:131Includedobservations:31Weightingseries:W1VariableCoefficientStd.Errort-StatisticProb.

X1.4258590.11910411.971570.0000C-334.8131344.3523-0.9722980.3389WeightedStatisticsR-squared0.831707

Meandependentvar3946.082AdjustedR-squared0.825904

S.D.dependentvar536.1907S.E.ofregression536.6796

Akaikeinfocriterion15.47102Sumsquaredresid8352726.

Schwarzcriterion15.56354Loglikelihood-237.8008

Hannan-Quinncriter.15.50118F-statistic143.3184

Durbin-Watsonstat1.369081Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.875855

Meandependentvar4443.526AdjustedR-squared0.871574

S.D.dependentvar1972.072S.E.ofregression706.7236

Sumsquaredresid14484289Durbin-Watsonstat1.532908

对此模型进行White检验得:HeteroskedasticityTest:WhiteF-statistic0.299395

Prob.F(2,28)0.7436Obs*R-squared0.649065

Prob.Chi-Square(2)0.7229ScaledexplainedSS1.798067

Prob.Chi-Square(2)0.4070TestEquation:DependentVariable:WGT_RESID^2Method:LeastSquaresDate:12/24/15Time:Sample:131Includedobservations:31CollineartestregressorsdroppedfromspecificationVariableCoefficientStd.Errort-StatisticProb.

C61927.891045682.0.0592220.9532WGT^2-593927.91173622.-0.5060640.6168X*WGT^2282.4407747.97800.3776060.7086R-squared0.020938

Meandependentvar269442.8AdjustedR-squared-0.048995

S.D.dependentvar689166.5S.E.ofregression705847.6

Akaikeinfocriterion29.86395Sumsquaredresid1.40E+13

Schwarzcriterion30.00273Loglikelihood-459.8913

Hannan-Quinncriter.29.90919F-statistic0.299395

Durbin-Watsonstat1.922336Prob(F-statistic)0.743610从上可知,nR2=0.649065,比较计算的统计量的临界值,因为nR2=0.649065<0.05(2)=5.9915,所以接受原假设,该模型消除了异方差。估计结果为:Y=1.425859X-334.8131t=(11.97157)(-0.972298)R2=0.875855F=143.3184DW=1.369081②用权数w2=1/x2,用回归分析得:DependentVariable:YMethod:LeastSquaresDate:12/24/15Time:Sample:131Includedobservations:31Weightingseries:W2VariableCoefficientStd.Errort-StatisticProb.

X1.5570400.14539210.709220.0000C-693.1946376.4760-1.8412720.0758WeightedStatisticsR-squared0.798173

Meandependentvar3635.028AdjustedR-squared0.791214

S.D.dependentvar1029.830S.E.ofregression466.8513

Akaikeinfocriterion15.19224Sumsquaredresid6320554.

Schwarzcriterion15.28475Loglikelihood-233.4797

Hannan-Quinncriter.15.22240F-statistic114.6875

Durbin-Watsonstat1.562975Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.834850

Meandependentvar4443.526AdjustedR-squared0.829156

S.D.dependentvar1972.072S.E.ofregression815.1229

Sumsquaredresid19268334Durbin-Watsonstat1.678365

对此模型进行White检验得:HeteroskedasticityTest:WhiteF-statistic0.299790

Prob.F(3,27)0.8252Obs*R-squared0.999322

Prob.Chi-Square(3)0.8014ScaledexplainedSS1.789507

Prob.Chi-Square(3)0.6172TestEquation:DependentVariable:WGT_RESID^2Method:LeastSquaresDate:12/24/15Time:Sample:131Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.

C-111661.8549855.7-0.2030750.8406WGT^2426220.22240181.0.1902620.8505X^2*WGT^20.1948880.5163950.3774020.7088X*WGT^2-583.21512082.820-0.2800120.7816R-squared0.032236

Meandependentvar203888.8AdjustedR-squared-0.075293

S.D.dependentvar419282.0S.E.ofregression434780.1

Akaikeinfocriterion28.92298Sumsquaredresid5.10E+12

Schwarzcriterion29.10801Loglikelihood-444.3062

Hannan-Quinncriter.28.98330F-statistic0.299790

Durbin-Watsonstat1.835854Prob(F-statistic)0.825233从上可知,nR2=0.999322,比较计算的统计量的临界值,因为nR2=0.999322<0.05(2)=5.9915,所以接受原假设,该模型消除了异方差。估计结果为:Y=1.557040X-693.1946t=(10.70922)(-1.841272)R2=0.798173F=114.6875DW=1.562975③用权数w3=1/sqr(x),用回归分析得:DependentVariable:YMethod:LeastSquaresDate:12/24/15Time:Sample:131Includedobservations:31Weightingseries:W3VariableCoefficientStd.Errort-StatisticProb.

X1.3301300.09834513.525070.0000C-47.40242313.1154-0.1513900.8807WeightedStatisticsR-squared0.863161

Meandependentvar4164.118AdjustedR-squared0.858442

S.D.dependentvar991.2079S.E.ofregression586.9555

Akaikeinfocriterion15.65012Sumsquaredresid9990985.

Schwarzcriterion15.74263Loglikelihood-240.5768

Hannan-Quinncriter.15.68027F-statistic182.9276

Durbin-Watsonstat1.237664Prob(F-statistic)0.000000UnweightedStatisticsR-squared0.890999

Meandependentvar4443.526AdjustedR-squared0.887240

S.D.dependentvar1972.072S.E.ofregression662.2171

Sumsquaredresid12717412Durbin-Watsonstat1.314859

对此模型进行White检验得:HeteroskedasticityTest:WhiteF-statistic0.423886

Prob.F(2,28)0.6586Obs*R-squared0.911022

Prob.Chi-Square(2)0.6341ScaledexplainedSS2.768332

Prob.Chi-Square(2)0.2505TestEquation:DependentVariable:WGT_RESID^2Method:LeastSquaresDate:12/24/15Time:Sample:131Includedobservations:31CollineartestregressorsdroppedfromspecificationVariableCoefficientStd.Errort-StatisticProb.

C1212308.2141958.0.5659810.5759WGT^2-715673.01301839.-0.5497400.5869X^2*WGT^2-0.0151940.082276-0.1846770.8548R-squared0.029388

Meandependentvar322289.8AdjustedR-squared-0.039942

S.D.dependentvar863356.7S.E.ofregression880429.8

Akaikeinfocriterion30.30597Sumsquaredresid2.17E+13

Schwarzcriterion30.44475Loglikelihood-466.7426

Hannan-Quinncriter.30.35121F-statistic0.423886

Durbin-Watsonstat1.887426Prob(F-statistic)0.658628从上可知,nR2=0.911022,比较计算的统计量的临界值,因为nR2=0.911022<0.05(2)=5.9915,所以接受原假设,该模型消除了异方差。估计结果为:Y=1.330130X-47.40242t=(13.52507)(-0.151390)R2=0.863161F=182.9276DW=1.237664经过检验发现,用权数w1的效果最好,所以综上可知,即修改后的结果为:Y=1.425859X-334.8131t=(11.97157)(-0.972298)R2=0.875855F=143.3184DW=1.3690815.6(1)a)用Eviews模型分析得:DependentVariable:YMethod:LeastSquaresDate:12/24/15Sample:19782011Includedobservations:34VariableCoefficientStd.Errort-StatisticProb.

X0.7462410.01912039.030270.0000C92.5542242.805292.1622150.0382R-squared0.979426

Meandependentvar1295.802AdjustedR-squared0.978783

S.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论