版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下面的计算中,正确的是()A. B.C. D.2.已知点,都在一次函数的图像上,则的大小关系是()A. B. C. D.不能确定3.下列各式中,属于分式的是()A. B. C. D.4.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,1.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2 B.4和2 C.2和3 D.3和25.如图,已知,延长至,使;延长至,使;延长至,使;连接、、,得.若的面积为,则的面积为()A. B. C. D.6.下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.7.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是().A. B. C. D.8.近期,受不良气象条件影响,我市接连出现重污染天气,细颗粒物(PM2.5)平均浓度持续上升,严重威胁人民群众的身体健康,PM2.5是直径小于或等于2.5微米(1微米相当于1毫米的千分之一)的颗粒物,可直接进入肺部把2.5微米用科学记数法表示为()A.2.5×10﹣6米 B.25×10﹣5米C.0.25×10﹣4米 D.2.5×10﹣4米9.若是无理数,则的值可以是()A. B. C. D.10.已知等腰三角形的两边长满足+(b﹣5)2=0,那么这个等腰三角形的周长为()A.13 B.14 C.13或14 D.911.把一副三角板按如图叠放在一起,则的度数是A. B. C. D.12.在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点在第()象限A.一 B.二 C.三 D.四二、填空题(每题4分,共24分)13.点M(3,﹣1)到x轴距离是_____.14.先化简,再求值:,其.15.一种微生物的半径是,用小数把表示出来是_______.16.关于一次函数有如下说法:①当时,随的增大而减小;②当时,函数图象经过一、二、三象限;③函数图象一定经过点;④将直线向下移动个单位长度后所得直线表达式为.其中说法正确的序号是__________.17.我们知道,实数与数轴上的点是一一对应的,任意一个实数在数轴上都能找到与之对应的点,比如我们可以在数轴上找到与数字2对应的点.(1)在如图所示的数轴上,画出一个你喜欢的无理数,并用点表示;(2)(1)中所取点表示的数字是______,相反数是_____,绝对值是______,倒数是_____,其到点5的距离是______.(3)取原点为,表示数字1的点为,将(1)中点向左平移2个单位长度,再取其关于点的对称点,求的长.18.如图,中,,以它的各边为边向外作三个正方形,面积分别为、、,已知,,则______.三、解答题(共78分)19.(8分)解决问题:小川同学乘坐新开通的C2701次城际列车,它从“北京西”站始发直达终点“大兴机场”站,但因列车行驶的全程分别属于两段不同的路网A段和新开通运营的B段,在两段运行的平均速度有所不同,小川搜集了相关信息填入下表.线路划分A段B段(新开通)所属全国铁路网京九段京雄城际铁路北京段站间北京西—李营李营—大兴机场里程近似值(单位:km)1533运行的平均速度(单位:km/h)所用时间(单位:h)已知C2701次列车在B段运行的平均速度比在A段运行的平均速度快35km/h,在B段运行所用时间是在A段运行所用时间的1.5倍,C2701次列车从“北京西”站到“大兴机场”站全程需要多少小时?(提示:可借助表格解决问题)20.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△,请画出△并写出点的坐标;(2)请画出△ABC关于轴对称的△,并写出点的坐标.21.(8分)如图,已知在平面直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)画出△ABC关于y轴对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应);(2)通过画图,在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB,并直接写出点Q的坐标.点Q的坐标为.22.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为A1,B1,C1;(2)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是.(3)在y轴上是否存在点Q.使得S△ACQ=S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.23.(10分)如图,在ABC中,AB=13,BC=14,AC=15.求BC边上的高.24.(10分)如图,在平面直角坐标系xOy中,直线与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线AB与直线DC相交于点E.(1)求AB的长;(2)求△ADE的面积:(3)若点M为直线AD上一点,且△MBC为等腰直角三角形,求M点的坐标.25.(12分)甲、乙两车分别从两地同时出发,沿同一公路相向而行,开往两地.已知甲车每小时比乙车每小时多走,且甲车行驶所用的时间与乙车行驶所用的时间相同.(1)求甲、乙两车的速度各是多少?(2)实际上,甲车出发后,在途中因车辆故障耽搁了20分钟,但仍比乙车提前1小时到达目的地.求两地间的路程是多少?26.已知在平面直角坐标系中有,,三点,请回答下列问题:(1)在坐标系内描出以,,三点为顶点的三角形.(2)求的面积.(3)画出关于轴对称的图形
参考答案一、选择题(每题4分,共48分)1、A【分析】根据幂的运算法则依次计算判断即可.【详解】解:A.,故A选项正确;B.,故B选项错误;C.,故C选项错误;D.,故D选项错误.故选A.【点睛】本题考查了幂的运算性质,掌握幂的运算性质是解题的关键.2、A【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【详解】∵一次函数中,k=-3<0,∴y随x的增大而减小,∵<4,∴y1>y1.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3、D【分析】由题意根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【详解】解:A、没有分母,所以它是整式,故本选项错误;B、的分母中不含有字母,因此它们是整式,而不是分式,故本选项错误;C、的分母中不含有字母,因此它们是整式,而不是分式,故本选项错误;D、的分母中含有字母,因此它们是分式,故本选项正确;故选:D.【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.4、D【解析】试题分析:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,1),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选D.考点:中位数;算术平均数;众数5、C【分析】如图所示:连接AE、CD,要求△DEF的面积,可以分三部分来计算,利用高一定时,三角形的面积与高对应的底成正比的关系进行计算;利用已知△ABC的面积k计算与它同高的三角形的面积,然后把所求各个面积相加即可得出答案.【详解】如图所示:连接AE、CD∵BD=AB∴S△ABC=S△BCD=k则S△ACD=2k∵AF=3AC∴FC=4AC∴S△FCD=4S△ACD=4×2k=8k同理求得:S△ACE=2S△ABC=2kS△FCE=4S△ACE=4×2k=8kS△DCE=2S△BCD=2×k=2k∴S△DEF=S△FCD+S△FCE+S△DCE=8k+8k+2k=18k故选:C【点睛】本题主要考查三角形的面积与底的正比关系的知识点:当高相同时,三角形的面积与高对应的底成正比的关系,掌握这一知识点是解题的关键.6、D【分析】根据三角形高的定义,过点B向AC边作垂线,点B和垂足D之间的线段是△ABC的高,逐项判断即可.【详解】∵由三角形的高线定义可知:过点B作BD⊥AC,垂足为D,则线段BD为△ABC的高;∴选项A、B、C图形中垂足不正确,都不符合题意,只有选项D符合题意.故选:D.【点睛】本题考查三角形的高线,正确理解三角形的高线是解题关键.7、B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.8、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;【详解】∵1微米=0.000001米=1×米,∴2.5微米=2.5×1×米=2.5×米;故选:A.【点睛】本题主要考查了科学记数法的表示,掌握科学记数法是解题的关键.9、C【解析】根据无理数的概念和算术平方根解答即可.【详解】A.是有理数,错误;B.是有理数,错误;C.是无理数,正确;D.是有理数,错误.故选:C.【点睛】本题考查了无理数,关键是根据无理数的概念和算术平方根解答.10、C【解析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【详解】解:根据题意得,a﹣4=0,b﹣5=0,解得a=4,b=5,①4是腰长时,三角形的三边分别为4、4、5,∵4+4=8>5,∴能组成三角形,周长=4+4+5=13,②4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=1,所以,三角形的周长为13或1.故选:C.【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.11、A【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,
∠α=∠1+∠B=135°+30°=165°.
故选A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12、A【分析】利用关于y轴对称的点的坐标特点求对称点,然后根据点的坐标在平面直角坐标系内的位置求解.【详解】解:点P(-3,5)关于y轴的对称点的坐标为(3,5).在第一象限故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题(每题4分,共24分)13、1【分析】点到x轴的距离是该点纵坐标的绝对值,根据点坐标即可得到答案.【详解】解:M(3,﹣1)到x轴距离是1.故答案为:1.【点睛】此题考查点到坐标轴的距离,正确理解距离与点坐标的关系是解题的关键.14、,【分析】根据分式混合运算、二次根式的性质分析,即可得到答案.【详解】当时故答案为:,.【点睛】本题考查了分式和二次根式的知识;解题的关键是熟练掌握分式混合运算、二次根式的性质,从而完成求解.15、0.1【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6×10-6m=0.1m.故答案为:0.1.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).16、②【分析】根据一次函数的图象与性质一一判断选择即可.【详解】解:①当时,随的增大而增大,故错误;②当时,函数图象经过一、二、三象限,正确;③将点代入解析式可得,不成立,函数图象不经过点,故错误;④将直线向下移动个单位长度后所得直线表达式为,故错误.故答案为:②.【点睛】本题考查了一次函数的图象与性质,熟练掌握该知识点是解答关键.17、(1)见解析;(2)(答案不唯一);(3)(答案不唯一).【分析】(1)先在数轴上以原点为起始点,以某个单位长度的长为边长画正方形,再连接正方形的对角线,以对角线为半径,原点为圆心画弧即可在数轴上得到一个无理数;(2)根据(1)中的作图可得出无理数的值,然后根据相反数,绝对值,倒数的概念以及点与点间的距离概念作答;(3)先在数轴上作出点A平移后得到的点A′,点B,点C,再利用对称性及数轴上两点间的距离的定义,可求出CO的长.【详解】解:(1)如图所示:(答案不唯一)(2)由(1)作图可知,点表示的数字是,相反数是-,绝对值是,倒数是,其到点5的距离是5-,故答案为:(答案不唯一)(3)如图,将点向左平移2个单位长度,得到点,则点表示的数字为,关于点的对称点为,点表示的数字为1,∴A′B=BC=1-()=3-,∴A′C=2A′B=6-,∴CO=OA′+A′C=+6-=4-,即CO的长为.(答案不唯一)【点睛】本题考查无理数在数轴上的表示方法,数轴上两点间的距离的求法,勾股定理以及相反数、绝对值、倒数的概念,掌握基本概念是解题的关键.18、1【分析】由中,,得,结合正方形的面积公式,得+=,进而即可得到答案.【详解】∵中,,∴,∵=,=,=,∴+=,∵,,∴6+8=1,故答案是:1.【点睛】本题主要考查勾股定理与正方形的面积,掌握勾股定理,是解题的关键.三、解答题(共78分)19、C2701次从“北京西”站到“大兴机场”站全程需要0.5小时【分析】设列车在A段运行所用时间为t(h),用含t的代数式分别表示在A,B段的速度列出方程即可.【详解】解:设C2701次列车在A段运行所用时间为t(h),则在B段运行所用时间为1.5t(h).根据题意可得,化简,得,方程两边乘以t,得,化简,得,解得,经检验,原分式方程的解为.符合实际意义,C2701次从“北京西”站到“大兴机场”站所需要的时间为.答:C2701次从“北京西”站到“大兴机场”站全程需要0.5小时.【点睛】本题考查的是分式方程的应用,设出合适的未知数,表示需要的量找出相等关系是关键.20、(1)图详见解析,点的坐标(-2,-1);(2)图详见解析,点的坐标(4,-1)【分析】(1)根据题干要求,分别对点A、B、C进行平移,并依次连接对应点得到平移后图形,读图可得到点的坐标;(2)分别作出点A、B、C关于y轴对应的点,并依次连接对应点得到图形,读图可得到的坐标.【详解】(1)图形如下:则点的坐标(-2,-1);(2)图形如下:则点的坐标(4,-1).【点睛】本题考查在格点中绘制平移和对称的图形,只需找出对应点,然后依次连接对应点即为变换后的图形.21、(1)见解析;(2)见解析,(2,0)【分析】(1)依据轴对称的性质进行作图,即可得到△A1B1C1;(2)作点A关于x轴的对称点A',连接A'B,交x轴于点Q,则QA与QB之和最小.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点Q即为所求,点Q的坐标为(2,0).故答案为:(2,0).【点睛】本题考查了利用轴对称作图以及最短距离的问题,解题的关键是最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.22、(1)(﹣1,1),(﹣4,2),(﹣3,4);(2)(2,0);(3)存在,或.【分析】(1)作出A、B、C关于y轴的对称点A′、B′、C′即可得到坐标;(2)作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小;(3)存在.设Q(0,m),由S△ACQ=S△ABC可知三角形ACQ的面积,延长AC交y轴与点D,求出直线AC解析式及点D坐标,分点Q在点D上方和下方两种情况,构建方程即可解决问题.【详解】解:(1)△A1B1C1如图所示,A1(﹣1,1),B1(﹣4,2),C1(﹣3,4);故答案为:(﹣1,1),(﹣4,2),(﹣3,4);(2)如图作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小,此时点P的坐标是(2,0);故答案为:(2,0);(3)存在.设Q(0,m),S△ABC=(9﹣×2×3﹣×1×3﹣×1×2)∵S△ACQ=S△ABC,如图,延长AC交y轴与点D,设直线AC的解析式为将点代入得,解得所以所以点当点Q在点D上方时,连接CQ、AQ,,解得;当点Q在点D上方时,连接CQ、AQ,,解得,综合上述,点Q的坐标为或.【点睛】本题考查了平面直角坐标系中的轴对称,涉及了线段和的最小值问题及三角形面积问题,灵活的结合图形确定点P的位置及表示三角形的面积是解题的关键.23、1【分析】AD为高,那么题中有两个直角三角形.AD在这两个直角三角形中,设BD为未知数,可利用勾股定理都表示出AD长.求得BD长,再根据勾股定理求得AD长.【详解】解:设BD=x,则CD=14-x.在RtABD中,=132-在RtACD中,=152-∴132-=152-解之得=5∴AD===1.【点睛】勾股定理.24、(1)AB的长为10;(2)△ADE的面积为36;(3)M点的坐标(4,-4)或(12,12)【分析】(1)利用直线AB的函数解析式求出A、B坐标,再利用勾股定理求出AB即可;(2)由折叠知∠B=∠C,∠BDA=∠CDA,由∠BAO=∠CAE证得∠AEC=∠AOB=90º,利用角平分线的性质得到OA=AE,进而证得Rt△AOD≌Rt△AED,利用全等三角形的性质和三角形的面积公式求解即可;(3)由待定系数法求出直线AB的解析式,设点M的坐标,根据折叠性质知MB=MC,根据题意,有,代入点M坐标解方程即可求解.【详解】(1)当x=0时,y=8,∴B(0,8),当y=0时,由得,x=6,∴A(6,0),在Rt△AOB中,OA=6,OB=8,由勾股定理得:AB==10;(2)由折叠性质得:∠B=∠C,∠BDA=∠CDA,AC=AB=10,BD=DC,∴OC=16,设OD=x,则DC=BD=x+8,在Rt△COD中,由勾股定理得:,解得:OD=12,∵∠BAO=∠CAE,且∠B+∠BAO+∠AOB=∠C+∠CAE+∠AEC=180º,∴∠AEC=∠AOB=90º,∴∠AED=∠AOD=90º,又∵∠BDA=∠CDA,∴OA=AE=3,在Rt△AOD和Rt△AED中,,∴Rt△AOD≌Rt△AED,∴;(3)设直线AD的解析式为y=kx+b,由(2)中OD=12得:点D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程设备租赁及运输合同
- 水域生态恢复及垃圾清理方案
- 高职院校学生国际视野拓展方案
- 临时信号灯施工方案
- 郑州大学《光学》2021-2022学年第一学期期末试卷
- 学校围墙拆除与新建方案
- 2024年度企业环保治理工程合同
- 2024年度航空器材研发、生产与销售合同
- 金融机构全面预算管理制度研究
- 农村红色经典诵读推广方案
- 4 15《自然资源的开发与保护》教案六年级科学上册人教版
- 小学道德和法治课程学习评价课件
- 格力多联机系列can通讯协议第五代
- 大学生心理健康教育之新生入学适应课件
- 初中学生职业人生规划课件
- 胸痛单元建设课件
- 介入并发症应急处置预案与处理流程图
- 干、湿空气密度的计算
- 中华人民共和国劳动合同法(英文版)
- 2021年上海外国语大学辅导员招聘笔试试题及答案解析
- PETS5历年真题(口语)
评论
0/150
提交评论