




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列是世界各国银行的图标,其中不是轴对称图形的是()A. B. C. D.2.如果实数a,b满足a+b=6,ab=8,那么a2+b2=()A.36 B.20 C.52 D.143.下列各数是无理数的是()A. B.(两个1之间的0依次多1个)C. D.4.在实数,,,,,中,无理数有()A.1个 B.2个 C.3个 D.4个5.化简的结果是()A.35 B. C. D.6.一副三角板如图摆放,则的度数为()A. B. C. D.7.下列图形中是轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个8.下列命题的逆命题为假命题的是()A.如果一元二次方程没有实数根,那么.B.线段垂直平分线上任意一点到这条线段两个端点的距离相等.C.如果两个数相等,那么它们的平方相等.D.直角三角形两条直角边的平方和等于斜边的平方.9.已知,则的值是()A. B. C.1 D.10.、在数轴上的位置如图所示,那么化简的结果是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,中,厘米,厘米,点为的中点,如果点在线段上以厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.若点的运动速度为厘米/秒,则当与全等时,的值为__________.12.如图,△ABC≌△DEC,∠ACD=28°,则∠BCE=_____°.13.如图,AC⊥BC,AD⊥BD,垂足分别是C、D,若要用“HL”得到Rt△ABC≌Rt△BAD,则你添加的条件是______________.(写一种即可)14.如图,△ABC≌△A′B′C′,其中∠A=46°,∠B′=27°,则∠C=_____°.15.的立方根是________.16.若关于的分式方程的解是负数,则m的取值范围是_________________.17.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=_______18.若某个正数的两个平方根分别是与,则_______.三、解答题(共66分)19.(10分)如图,,分别是,中点,,垂足为,,垂足为,与交于点.(1)求证:;(2)猜想与的数量关系,并证明.20.(6分)已知:是等边三角形,D是直线BC上一动点,连接AD,在线段AD的右侧作射线DP且使∠ADP=30°,作点A关于射线DP的对称点E,连接DE、CE.(1)当点D在线段BC上运动时,如图,请用等式表示线段AB、CE、CD之间的数量关系,并证明;(2)当点D在直线BC上运动时,请直接写出AB、CE、CD之间的数量关系,不需证明.21.(6分)如图是某机器中的根空心钢立柱,高为h米,外半径为R米,内半径为r米,每立方米钢的重量为7.8吨,求:m根这样的空心钢立柱的总质量.22.(8分)阅读下列解题过程:已知,,为△ABC的三边长,且满足,试判断△ABC的形状.解:∵,①∴.②∴.③∴△ABC是直角三角形.④回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为.(2)错误的原因为.(3)请你将正确的解答过程写下来.23.(8分)如图,在平面直角坐标系中,正方形顶点为轴正半轴上一点,点在第一象限,点的坐标为,连接.动点在射线上(点不与点、点重合),点在线段的延长线上,连接、,,设的长为.(1)填空:线段的长=________,线段的长=________;(2)求的长,并用含的代数式表示.24.(8分)已知在平面直角坐标系中的位置如图所示.(1)画出关于轴对称的;(2)每个小方格都是边长为1个单位的正方形,求多边形的面积.25.(10分)如图,在中,平分交于点,,垂足为,且.若记,(不妨设),求的大小(用含的代数式表示).26.(10分)如图,这是由8个同样大小的立方体组成的魔方,体积为.(1)这个魔方的棱长为________.(2)图中阴影部分是一个正方形,求出阴影部分的周长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】本题考查的是轴对称图形的定义.把图形沿某条直线折叠直线两旁的部分能够重合的图形叫轴对称图形.A、B、C都可以,而D不行,所以D选项正确.2、B【分析】原式利用完全平方公式变形,将已知等式整体代入计算即可求出值.【详解】解:∵a+b=6,ab=8,
∴,
故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.3、B【分析】根据无理数是无限不循环小数对四个选项进行逐一分析即可.【详解】A.是分数,是有理数,故该选项不符合题意,B.(两个1之间的0依次多1个)是无限不循环小数,是无理数,故该选项符合题意,C.=2,是整数,是有理数,故该选项不符合题意,D.是有限小数,是有理数,故该选项不符合题意,故选:B.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.4、B【分析】根据无理数的三种形式:①开方开不尽的数,②无线不循环小数,③含有π的数,找出无理数的个数即可.【详解】解:,,无理数有:π,共2个,故选:B.【点睛】本题考查的是无理数的知识,掌握无理数的形式是解题的关键.5、B【分析】直接利用二次根式的性质化简求出答案.【详解】解:.故选:B.【点睛】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.6、C【分析】根据三角板的特点可得∠2和∠3的度数,然后利用三角形内角和定理求出∠1即可解决问题.【详解】解:如图,根据三角板的特点可知:∠2=60°,∠3=45°,∴∠1=180°-60°-45°=75°,∴∠α=∠1=75°,故选:C.【点睛】本题主要考查了三角形内角和定理,熟知三角形的内角和等于180°是解题的关键.7、C【解析】根据轴对称图形的概念解答即可.【详解】第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,第五个图形不是轴对称图形.综上所述:是轴对称图形的是第一、四共2个图形.故选C.【点睛】本题考查了中对称图形以及轴对称图形,掌握中心对称图形与轴对称图形的概念是解决此类问题的关键.8、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】、逆命题为:如果一元一次方程中,那么没有实数根,正确,是真命题;、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:.【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.9、D【解析】令,得到:a=2k、b=3k、c=4k,然后代入即可求解.【详解】解:令得:a=2k、b=3k、c=4k,.故选D.【点睛】本题考查了比例的性质,解题的关键是用一个字母表示出a、b、c,然后求值.10、B【分析】先根据数轴确定出a,b的正负,进而确定出的正负,再利用绝对值的性质和二次根式的性质化简即可.【详解】由数轴可知∴∴原式=故选:B.【点睛】本题主要结合数轴考查绝对值的性质及二次根式的性质,掌握绝对值的性质及二次根式的性质是解题的关键.二、填空题(每小题3分,共24分)11、2.25或3【分析】已知∠B=∠C,根据全等三角形的性质得出BD=PC,或BP=PC,进而算出时间t,再算出y即可.【详解】解:设经过t秒后,△BPD与△CQP全等,∵AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,∵∠B=∠C,BP=yt,CQ=3t,
∴要使△BPD和△CQP全等,则当△BPD≌△CQP时,BD=CP=6厘米,∴BP=3,
∴t=3÷3=1(秒),
y=3÷1=3(厘米/秒),
当△BPD≌△CPQ,∴BP=PC,BD=QC=6,∴t=6÷3=2(秒),
∵BC=9cm,
∴PB=4.5cm,
y=4.5÷2=2.25(厘米/秒).故答案为:2.25或3.【点睛】本题考查了等腰三角形的性质和全等三角形的性质,注意:全等三角形的对应边相等.12、1【分析】根据全等三角形对应角相等可得∠ACB=∠DCE,再根据等式的性质两边同时减去∠ACE可得结论.【详解】证明:∵△ABC≌△DEC,∴∠ACB=∠DCE,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,即∠ACD=∠BCE=1°.故答案是:1.【点睛】本题考查了全等三角形的性质,三角形的内角和定理的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等.13、AC=BD或AD=BC.(答案不唯一)【解析】AC=BD或AD=BC都可以.14、107【解析】根据全等三角形的性质求出∠B的度数,根据三角形内角和定理计算即可.【详解】∵△ABC≌△A′B′C′,
∴∠B=∠B′=27°,
∴∠C=180°-∠A-∠B=107°,
故答案为:107°.【点睛】本题考查的知识点是全等三角形的性质,解题关键是掌握全等三角形的对应边相等、全等三角形的对应角相等.15、-3.【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.16、且【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于m的不等式,求出不等式的解集即可确定出m的范围.【详解】方程两边同乘(),
解得,
∵,
∴,
解得,
又,
∴,
∴,
即且.
故答案为:且.【点睛】本题考查了分式方程的解以及解一元一次不等式,关键是会解出方程的解,特别注意:不要漏掉隐含条件最简公分母不为1.17、30°【解析】由折叠的性质可知∠B=∠AEB,因为E点在AC的垂直平分线上,故EA=EC,可得∠EAC=∠C,根据外角的性质得∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,由此可求∠C.解:由折叠的性质,得∠B=∠AEB,∵E点在AC的垂直平分线上,∴EA=EC,∴∠EAC=∠C,由外角的性质,可知∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,即2∠C+∠C=90°,解得∠C=30°.故本题答案为:30°.本题考查了折叠的性质,线段垂直平分线的性质.关键是把条件集中到直角三角形中求解.18、1【分析】根据一个正数的两个平方根互为相反数可得2a+1+2a-5=0,解方程求出a值即可.【详解】∵某个正数的两个平方根分别是2a+1与2a-5,∴2a+1+2a-5=0,解得:a=1故答案为:1【点睛】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共66分)19、(1)证明见解析(2)猜想:【解析】(1)连接BC,再利用垂直平分线的性质直接得到相应线段的相等关系;(2)由(1)得出三角形ABC是等边三角形,再推出,即可得出答案.【详解】(1)连接∵点是中点且于点∴是线段的垂直平分线∴同理∴(2)猜想:证明:由(1)得∴是等边三角形∴在中在中∵在中又∵∴∴∴【点睛】本题考查的知识点是线段垂直平分线的性质,解题的关键是熟练的掌握线段垂直平分线的性质20、(1)AB=CE+CD,见解析;(2)当点D在线段CB上时,AB=CE+CD;当点D在CB的延长线上时,AB=CD-CE,当点D在BC延长线上时,AB=CE-CD.【分析】(1)由对称可得DP垂直平分AE,则AD=DE,由∠ADP=30°可得△ADE是等边三角形,进而可得△ABC是等边三角形,可得AB=AC=BC,∠BAC=60°,进而可得∠BAD=∠CAE,由SAS可得△BAD≌△CAE,得BD=CE,进而可证得结论;(2)数量关系又三种,可分三种情况讨论:①当点D在线段BC上时,(1)中已证明;②当点D在CB的延长线上时,如图所示,易知△ADE是等边三角形,可得AD=AE,,由△ABC是等边三角形,可得AB=AC=BC,∠BAC=60°,进而可得∠BAD=∠CAE,由SAS可得△BAD≌△CAE,可得BD=CE,进而可得此种情况的结论;③当点D在BC延长线上时,如图所示,易知△ADE是等边三角形,可得AD=AE,,由△ABC是等边三角形,可得AB=AC=BC,∠BAC=60°,进而可得∠BAD=∠CAE,由SAS可得△BAD≌△CAE,可得BD=CE,进而可得此种情况的结论.【详解】解:(1)AB=CE+CD证明:∵点A关于射线DP的对称点为E,∴DP垂直平分AE,∴AD=DE,又∵∠ADP=30°,∴∠ADE=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=∠ADE=60°,又∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE,∴BD=CE,∴AB=BC=BD+CD=CE+CD;(2)AB=CE+CD,AB=CE-CD,AB=CD-CE.①当点D在线段BC上时,AB=CE+CD,证明过程为(1);②当点D在CB的延长线上时,如下图所示,AB=CD-CE,证明过程如下:由(1)得,△ADE是等边三角形,∴AD=AE,,又∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°,∴∠BAC-∠BAE=∠DAE-∠BAE,即:∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE,∴BD=CE,∴AB=BC=CD-BD=CD-CE;③当点D在BC延长线上时,如图所示,AB=CE-CD,证明过程如下:由(1)得,△ADE是等边三角形,∴AD=AE,,又∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°,∴∠BAC+∠DAC=∠DAE+∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE,∴BD=CE,∴AB=BC=BD-CD=CE-CD;【点睛】本题主要考查三角形全等的判定和性质,根据题目条件作出正确的图形找出全等的三角形是解题的关键.21、7.8πhm(R2﹣r2)吨【分析】利用圆柱的体积公式求出钢立柱的体积,根据每立方米钢的重量为7.8吨计算即可.【详解】解:1根钢立柱的体积为:πh(R2﹣r2),故m根这样的空心钢立柱的总质量为:7.8πhm(R2﹣r2)吨.【点睛】本题主要考查了圆柱的体积,解题的关键是正确的求出1根钢管的体积.22、(1)③;(2)忽略了的可能;(3)见解析【分析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以,没有考虑是否为0;(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【详解】(1)根据题意可知,∵由,∴通过移项得,故③错误;(2)由(1)可知,错误的原因是:忽略了的可能;(3)正确的写法为:∵,∴,∴,∴,∴或,∴或,∴是等腰三角形或直角三角形或等腰直角三角形;故答案为是等腰三角形或直角三角形或等腰直角三角形【点睛】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.23、(1)(1)4,;(2)或【分析】(1)根据点的横坐标可得OA的长,根据勾股定理即可求出OB的长;(2)①点在轴正半轴,可证≌,得到,从而求得;②点在轴负半轴,过点做平行轴的直线,分别交轴、的延长线于点、,证得≌,.【详解】解:(1)∵B(4,4),∴OA=4,AB=4,∵∠OAB=90°,∴.故答案为:4;;(2)①点在轴正半轴,过点做平行轴的直线,分别交轴、的延长线于点、.∵,,∴.同理.∴,,∵轴,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025在线咨询服务合同
- 2025年上海市农产品买卖合同范本
- 2025法律顾问审核版工程活动隔断合同
- 发电机租赁合同
- 上海市买卖合同范本
- 彩钢围挡制作安装合同范本
- 劳动合同法(本科)形考任务1-4
- 2025授权产品合同模板版本
- 产品授权经营协议书
- 2025年03月咸阳事业单位研究生公开招聘(90人)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 中国矿山工程建设行业市场发展现状及前景趋势与投资分析研究报告(2024-2030)
- 疫情统计学智慧树知到答案2024年浙江大学
- 幼儿园一等奖公开课:大班绘本《爱书的孩子》课件
- 国家八年级数学质量测试题(六套)
- 空气自动监测站运维技术服务合同模版
- (完整)康复医学考试题(含答案)
- 个 人 简 历 及 亲 属 关 系 表
- 自密实混凝土课件(PPT 72页)
- 旅游投资简要概述PPT通用课件
- 空气轴承技术培训教程
- 金华职业技术学院提前招生综合测评试卷及答案
评论
0/150
提交评论