2023届江苏省靖江市第三中学数学八年级第一学期期末达标检测模拟试题含解析_第1页
2023届江苏省靖江市第三中学数学八年级第一学期期末达标检测模拟试题含解析_第2页
2023届江苏省靖江市第三中学数学八年级第一学期期末达标检测模拟试题含解析_第3页
2023届江苏省靖江市第三中学数学八年级第一学期期末达标检测模拟试题含解析_第4页
2023届江苏省靖江市第三中学数学八年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在中,,的垂直平分线交于点,交于点,若,则()A. B. C. D.2.分式有意义的条件是()A. B. C.且 D.3.已知,在中,,,,作.小亮的作法如下:①作,②在上截取,③以为圆心,以5为半径画弧交于点,连结.如图,给出了小亮的前两步所画的图形.则所作的符合条件的()A.是不存在的 B.有一个 C.有两个 D.有三个及以上4.若分式有意义,则a满足的条件是()A.a≠1的实数 B.a为任意实数 C.a≠1或﹣1的实数 D.a=﹣15.化简的结果为()A. B. C. D.6.禽流感病毒的形状一般为球形,直径大约为0.000000102米,用科学记数法表示为()米A. B. C. D.7.若是一个完全平方式,则常数的值是()A.11 B.21或 C. D.21或8.如图,在方形网格中,与有一条公共边且全等(不与重合)的格点三角形(顶点在格点上的三角形)共有()A.3个 B.4个 C.5个 D.6个9.如图,,,则图中等腰三角形的个数是()A.5 B.6 C.8 D.910.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等11.如图,在直角坐标系中,点、的坐标分别为和,点是轴上的一个动点,且、、三点不在同一条直线上,当的周长最小时,点的纵坐标是()A.0 B.1 C.2 D.312.如图,已知BF=CE,∠B=∠E,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是(

)A.AB=DE B.AC∥DF C.∠A=∠D D.AC=DF二、填空题(每题4分,共24分)13.若4a2+b2﹣4a+2b+2=0,则ab=_____.14.如果多项式可以分解成两个一次因式的积,那么整数的值可取________个.15.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=cm.16.若正比例函数的图象经过点,则的值是__________.17.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.18.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题(共78分)19.(8分)如图,点、、、在同一直线上,已知,,.求证:.20.(8分)客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,这个函数的图象如图所示.(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量.21.(8分)先化简再求值:求的值,其中.22.(10分)某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?23.(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+n的图象与正比例函数y=2x的图象交于点A(m,4).(1)求m、n的值;(2)设一次函数y=﹣x+n的图象与x轴交于点B,求△AOB的面积;(3)直接写出使函数y=﹣x+n的值小于函数y=2x的值的自变量x的取值范围.24.(10分)如图,点,在的边上,,.求证:.25.(12分)平面直角坐标系xOy中,一次函数=-x+6的图象与x轴,y轴分别交于点A,B.坐标系内有点P(m,m-3).(1)问:点P是否一定在一次函数=-x+6的图象上?说明理由(2)若点P在△AOB的内部(不含边界),求m的取值范围(3)若=kx-6k(k>0),请比较,的大小26.两个工程队共同参与一项筑路工程,若先由甲、乙两队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?

参考答案一、选择题(每题4分,共48分)1、B【分析】由垂直平分线的性质可得AE=BE,进而可得∠EAB=∠ABE,根据三角形外角性质可求出∠A的度数,利用等腰三角形性质求出∠ABC的度数.【详解】∵DE是AC的垂直平分线,∴AE=BE,∴∠A=∠ABE,∵,∠BEC=∠EAB+∠ABE,∴∠A=76°÷2=38°,∵AB=AC,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.2、A【分析】根据分式有意义的条件即可求出答案.【详解】根据题意得:x+1≠0,∴x≠﹣1.故选:A.【点睛】本题考查了分式有意义的条件,解答本题的关键是熟练运用分式有意义的条件,本题属于基础题型.3、C【解析】先根据直角三角形的性质求出点B到AN的距离,再根据直线与圆的位置关系即可得.【详解】如图,过点B作在中,则因由直线与圆的位置关系得:以为圆心,以5为半径画弧,与会有两个交点即所作的符合条件的有两个故选:C.【点睛】本题考查了直角三角形的性质(直角三角形中,角所对直角边等于斜边的一半)、直线与圆的位置关系,理解题意,利用直角三角形的性质求出BD的长是解题关键.4、A【解析】根据分式有意义的条件进行求解即可得.【详解】解:∵分式有意义,∴a﹣1≠0,解得:a≠1,故选A.【点睛】本题考查了分式的意义的条件,熟知分母不为0时分式有意义是解题的关键.5、B【解析】根据分式加减法的运算法则按顺序进行化简即可.【详解】原式====故选B【点睛】本题考查分式的运算、平方差公式、完全平方公式,熟练掌握分式运算法则、公式法因式分解是解题关键.6、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000102=1.02×10-7,故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D【分析】利用完全平方公式的结构特征判断即可得出答案.【详解】∵是一个完全平方式,∴,∴或,故选:D.【点睛】本题主要考查了完全平方公式的运用,熟练掌握相关公式是解题关键.8、B【分析】通过全等三角形的性质作轴对称图形可以分析得到.【详解】以为公共边可以画出两个,以、为公共边可以各画出一个,所以一共四个.故选B【点睛】本题考查了全等三角形的性质,根据方格的特点和全等三角形的性质结合画轴对称图形是解题的关键.9、C【详解】解:∵,∴∴,∴△ABC,△ABD,△ACE,△BOC,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.10、B【解析】试题分析:A.对顶角相等,所以A选项为真命题;B.两直线平行,同旁内角互补,所以B选项为假命题;C.两点确定一条直线,所以C选项为真命题;D.角平分线上的点到这个角的两边的距离相等,所以D选项为真命题.故选B.考点:命题与定理.11、C【分析】如解析图作B点关于y轴的对称点B′,连接AB′交y轴一点C点,根据两点之间线段最短,这时△ABC的周长最小,求出直线AB′的解析式为,所以,直线AB′与y轴的交点C的坐标为(0,2).【详解】作B点关于y轴的对称点B′,连接AB′交y轴一点C点,如图所示:∵点、的坐标分别为和,∴B′的坐标是(-2,0)∴设直线AB′的解析式为,将A、B′坐标分别代入,解得∴直线AB′的解析式为∴点C的坐标为(0,2)故答案为C.【点睛】此题主要考查平面直角坐标系中一次函数与几何问题的综合,解题关键是根据两点之间线段最短得出直线解析式.12、D【分析】根据全等三角形的判定定理分别进行分析即可.【详解】A.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.∵∠B=∠E,AB=DE,∴∆ABC≌∆DEF(SAS),故A不符合题意.B.∵AC∥DF,∴∠ACE=∠DFC,∴∠ACB=∠DFE(等角的补角相等)∵BF=CE,∠B=∠E,∴BF-CF=CE-CF,即BC=EF,∴∆ABC≌∆DEF(ASA),故B不符合题意.C.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.而∠A=∠D,∠B=∠E,∴∆ABC≌∆DEF(AAS),故C不符合题意.D.∵BF=CE,∴BF-CF=CE-CF,即BC=EF,而AC=DF,∠B=∠E,三角形中,有两边及其中一边的对角对应相等,不能判断两个三角形全等,故D符合题意.故选D.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每题4分,共24分)13、﹣0.5【分析】利用完全平方公式进行因式分解得到2个完全平方式,通过平方的非负性质推导出,n个非负项相加为0,则每一项为0.【详解】解:∵,∴,∴解得,∴.故答案为:.【点睛】利用完全平方公式因式分解,通过平方非负的性质为本题的关键.14、1【分析】根据题意先把1分成2个整数的积的形式,共有1种情况,m值等于这两个整式的和.【详解】解:把1分成2个整数的积的形式有11,(-1)(-1),22,(-2)(-2)所以m有1+1=5,(-1)+(-1)=-5,2+2=1,(-2)+(-2)=-1,共1个值.故答案为:1.【点睛】本题主要考查分解因式的定义,要熟知二次三项式的一般形式与分解因式之间的关系:x2+(m+n)x+mn=(x+m)(x+n),即常数项与一次项系数之间的等量关系.15、1.【解析】试题分析:因为Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,所以AB="2"CD=1.考点:直角三角形斜边上的中线.16、-1【分析】把点代入函数解析式,列出关于a的方程,通过解方程组来求a的值.【详解】∵正比例函数的图象经过点,∴解得,a=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx(k≠0).17、.【分析】过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【详解】解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=2,CN=3,∴MN2=22+32,∴MN=考点:2.正方形的性质;2.全等三角形的判定与性质.18、75【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题(共78分)19、详见解析【分析】首先判定,然后利用SSS判定,即可得解.【详解】∵∴,即在与中,∵,,∴∴【点睛】此题主要考查全等三角形的判定与性质,熟练掌握即可解题.20、(1)(2)【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;(2)令y=0,求出x值,此题得解.【详解】解:(1)设y与x的函数表达式为y=kx+b,由题意可得:解得:∴(x>10);(2)当y=0,,∴x=10,∴旅客最多可免费携带行李的质量为10kg.【点睛】本题主要考查求一次函数解析式,熟练掌握利用待定系数法求解函数表达式是解题的关键.21、,【分析】先把分式的分子分母分解因式,然后约分化简,注意运算的结果要化成最简分式或整式,再把给定的值代入求值.【详解】;把代入得:原式.【点睛】考查了有理数的混合运算,关键是进行有理数的混合运算时,注意各个运算律的运用,可以运算过程得到简化.22、规定期限1天;方案(3)最节省【分析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.【详解】解:设规定期限x天完成,则有:,解得x=1.经检验得出x=1是原方程的解;答:规定期限1天.方案(1):1×1.5=30(万元)方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×1=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.点睛:本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出分式方程④检验⑤作答.注意:分式方程的解必须检验.23、(1)m=2,n=1;(2)12;(3)x>2.【解析】试题分析:(1)先把A(m,4)代入正比例函数解析式可计算出m=2,然后把A(2,4)代入y=-x+n计算出n的值;(2)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x>2时,直线y=-x+n都在y=2x的下方,即函数y=-x+n的值小于函数y=2x的值.试题解析:(1)正比例函数的图象过点A(m,4).∴4=2m,∴m=2.又∵一次函数的图象过点A(m,4).∴4=-2+n,∴n=1.(2)一次函数的图象与x轴交于点B,∴令y=0,∴x=1点B坐标为(1,0).∴△AOB的面积.(3)∵由图象得当x>2时,直线y=-x+n都在y=2x的下方∴当x>2时,函数y=-x+n的值小于函数y=2x的值.【点睛】本题考查一次函数,涉及待定系数法,三角形面积公式,解方程等知识,本题属于中等题型.24、证明见解析【分析】先根据等腰三角形的性质求出,再根据三角形全等的判定定理得出,最后根据三角形全等的性质即可得证.【详解】(等边对等角)在和中,.【点睛】本题考查了等腰三角形的性质、三角形全等的判定定理与性质,熟记各性质和判定定理是解题关键.25、(1)点P不一定在函数的图像上,理由详见解析;(2);(3)详见解析.【分析】(1)要判断点P(m,m−3)是否在函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可;(2)由题意可得0<m<6,0<m−3<6,m−3<−m+6,解不等式即可求出m的取值范围;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论