版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.生物学家发现了一种病毒,其长度约为0.0000000052mm,数据0.0000000052用科学记数法表示正确的是()A. B. C. D.2.下列命题是真命题的是()A.同位角相等 B.两直线平行,同旁内角相等C.同旁内角互补 D.平行于同一直线的两条直线平行3.如图,为等边三角形,为延长线上一点,CE=BD,平分,下列结论:(1);(2);(3)是等边三角形,其中正确的个数为()A.0个 B.1个 C.2个 D.3个4.已知,,是的三条边长,则的值是()A.正数 B.负数 C.0 D.无法确定5.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A. B.C. D.6.校乒乓球队员的年龄分布如下表所示:年龄(岁)人数对于不同的,下列关于年龄的统计量不会发生改变的是()A.众数,中位数 B.众数,方差 C.平均数,中位数 D.平均数,方差7.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的作法依据的是()A.SSS B.SAS C.AAS D.ASA8.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为()A.8 B.7 C.6 D.59.下列说法:①解分式方程一定会产生增根;②方程=0的根为2;③方程的最简公分母为2x(2x﹣4);④x+=1+是分式方程.其中正确的个数是()A.1个 B.2个 C.3个 D.4个10.代数式是关于,的一个完全平方式,则的值是()A. B. C. D.11.如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm12.下列各数中最小的是()A.0 B.1 C.﹣ D.﹣π二、填空题(每题4分,共24分)13.如图,在△ABC中,AD是中线,则△ABD的面积△ACD的面积(填“>”“<”“=”).14.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=_____.15.如图,在△ABC中,∠ABC=∠ACB,AB的垂直平分线交AC于点M,交AB于点N.连接MB,若AB=8,△MBC的周长是14,则BC的长为____.16.若分式的值为0,则x=________.17.如图,在中,,是的垂直平分线,的周长为14,,那么的周长是__________.18.一副三角板如图放置,将三角板ADE绕点A逆时针旋转,使得三角板ADE的一边所在的直线与BC垂直,则的度数为______.三、解答题(共78分)19.(8分)老师在黑板上写出三个算式:,,,王华接着又写了两个具有同样规律的算式:,,…(1)请你再写出一个(不同于上面算式)具有上述规律的算式;(2)用文字表述上述算式的规律;(3)证明这个规律的正确性.20.(8分)问题探究:小明根据学习函数的经验,对函数的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题:在函数中,自变量x可以是任意实数;如表y与x的几组对应值:x01234y012321a______;若,为该函数图象上不同的两点,则______;如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:该函数有______填“最大值”或“最小值”;并写出这个值为______;求出函数图象与坐标轴在第二象限内所围成的图形的面积;观察函数的图象,写出该图象的两条性质.21.(8分)已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB、∠ACD,EF∥BC,分别交AC、CF于点H、F求证:EH=HF22.(10分)解下列不等式(组):(1)(2).23.(10分)如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形(下列图形中任选其一进行证明);(2)如图2,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出运动时间t的值;若不存在,请说明理由.24.(10分)在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)25.(12分)先化简,再求值其中a=1,b=1;26.如图,四边形ABCD中,,,,点P自点A向D以1cm/s的速度运动,到D点即停止;点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ分原四边形为两个新四边形;则当P,Q同时出发_____秒后其中一个新四边形为平行四边形.
参考答案一、选择题(每题4分,共48分)1、C【分析】将原数写成a×10﹣n,原数小数点左边起第一个不为零的数字看小数点向右移动了几位,即为n的值.【详解】解:0.0000000052=5.2×10﹣9;故答案为C.【点睛】本题考查了绝对值小于1的科学计数法,确定a和n是解答本题的关键.2、D【分析】利用平行线的性质及判定定理进行判断即可.【详解】A、两直线平行,同位角才相等,错误,是假命题;B、两直线平行,同旁内角互补,不是相等,错误,是假命题;C、两直线平行,同旁内角才互补,错误,是假命题;D、平行于同一直线的两条直线平行,是真命题;故选:D.【点睛】主要考查了命题的真假判断,以及平行线的判定定理.真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.3、D【分析】根据等边三角形的性质得出,,求出,根据可证明即可证明与;根据全等三角形的性质得出,,求出,即可判断出是等边三角形.【详解】是等边三角形,,,,平分,,,在和中,,故(2)正确;∴∴,故(1)正确;∴是等边三角形,故(3)正确.∴正确有结论有3个.故选:D.【点睛】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,要灵活运用等边三角形的三边相等、三个角相等的性质.4、B【分析】利用平方差公式将代数式分解因式,再根据三角形的三边关系即可解决问题.【详解】解:∵(a−b)2−c2=(a−b+c)(a−b−c),
∵a+c>b,b+c>a,
∴a−b+c>1,a−b−c<1,
∴(a−b)2−c2<1.
故选B.【点睛】本题考查因式分解的应用,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、图形既不是轴对称图形是中心对称图形,
B、图形是轴对称图形,
C、图形是轴对称图形,也是中心对称轴图形,
D、图形是轴对称图形.
故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、A【分析】先求出总人数,再确定不变的量即可.【详解】人,一共有个人,关于年龄的统计量中,有个人岁,∴众数是15,中位数是15,对于不同的,统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.7、A【分析】根据角平分线的作法步骤,连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【详解】解:如下图所示:连接CP、DP在△OCP与△ODP中,由作图可知:∴△OCP≌△ODP(SSS)故选:A.【点睛】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。8、B【详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,AE=AC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6−4)+5=7故选B.【点睛】本题考查全等三角形的应用.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、HL.通过证明三角形全等可以得到相等的边或角,可将待求量进行转化,使问题迎刃而解.9、A【分析】根据分式方程的定义、增根的概念及最简公分母的定义解答.【详解】①解分式方程不一定会产生增根,故错误,②方程=0的根为2,当x=2时分母为0,所以x=2是增根,故错误,③方程的最简公分母为2x(x﹣2),故错误,④根据分式方程的定义可知x+=1+是分式方程,综上所述:①、②、③错误,④正确,共一个选项正确,故选:A.【点睛】本题主要考查解分式方程,需明确分式的定义及解法.10、C【分析】根据完全平方公式的a、b求出中间项即可.【详解】,根据a、b可以得出:k=±2×3=±1.故选C.【点睛】本题考查完全平方公式的计算,关键在于熟练掌握完全平方公式.11、B【分析】直接利用角平分线的性质得出DE=EC,进而得出答案.【详解】解:∵△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,
∴EC=DE,
∴AE+DE=AE+EC=3cm.
故选:B.【点睛】此题主要考查了角平分线的性质,得出EC=DE是解题关键.12、D【解析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π<﹣<0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.二、填空题(每题4分,共24分)13、=【解析】根据三角形的面积公式以及三角形的中线的概念,知:三角形的中线可以把三角形的面积分成相等的两部分.解:根据等底同高可得△ABD的面积=△ACD的面积.注意:三角形的中线可以把三角形的面积分成相等的两部分.此结论是在图形中找面积相等的三角形的常用方法.14、-1【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.【详解】∵点A(1,a)与点B(b,4)关于x轴对称,∴b=1,a=−4,则a+b=−4+1=−1,故答案为:−1.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.15、1【解析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解.【详解】∵M、N是AB的垂直平分线∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14-8=1.故答案为:1.【点睛】线段垂直平分线的性质,等腰三角形的性质.16、-1【分析】根据分式有意义的条件列方程组解答即可.【详解】解:有题意得:解得x=-1.故答案为x=-1.【点睛】本题考查了分式等于0的条件,牢记分式等于0的条件为分子为0、分母不为0是解答本题的关键.17、1【分析】由垂直平分线的性质可得,故的周长可转化为:,由,可得,故可求得的周长.【详解】∵是的垂直平分线,∴,∵的周长为14,∴,又,∴,∴的周长.故答案为:1.【点睛】线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等,解题的关键是运用线段的垂直平分线的性质.18、15°或60°.【分析】分情况讨论:①DE⊥BC,②AD⊥BC,然后分别计算的度数即可解答.【详解】解:①如下图,当DE⊥BC时,如下图,∠CFD=60°,旋转角为:=∠CAD=60°-45°=15°;(2)当AD⊥BC时,如下图,旋转角为:=∠CAD=90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.三、解答题(共78分)19、(1)152-92=8×18,132-92=8×11;(2)任意两个奇数的平方差是8的倍数;(3)证明见解析.【分析】(1)根据算式的规律可见:左边是两个奇数的平方差,右边是8的倍数;可写出相同规律的算式;
(2)任意两个奇数的平方差是8的倍数;
(3)可设任意两个奇数为:2n+1,2m+1(其中n、m为整数)计算即可.【详解】解:(1)通过对老师和王华算式的观察,可以知道,左边是奇数的平方差,右边是8的倍数,
∴152-92=8×18,132-92=8×11,…;
(2)上述规律可用文字描述为:任意两个奇数的平方差等于8的倍数;
(3)证明:设m、n为整数,则任意两个奇数可表示为2m+1和2n+1,
∴(2m+1)2-(2n+1)2=(2m-2n)(2m+2n+2)=4(m-n)(m+n+1),
又∵①当m、n同奇数或同偶数时;m-n一定是偶数,设m-n=2a;
②m、n一奇数一偶数;m+n+1一定是偶数,设m+n+1=2a
∴(2m+1)2-(2n+1)2=8a(m+n+1),
而a(m+n+1)是整数,
∴任意两个奇数的平方差等于8的倍数成立.【点睛】本题考查了一个数学规律,即任意两个奇数的平方差等于8的倍数.通过本题的学习可见数字世界的奇妙变换,很有意义.20、(2)0;;(3)①最大值,3;②;③函数图象为轴对称图形,对称轴为y轴;当时,y随x的增大而增大,当时,y随x增大而减小.【解析】将代入函数解析式即可求得a;当时,根据函数解析式可求得b;根据题意画出函数图象,根据图象特征即可求得题目所求.【详解】解:当时,求得;由题意,当时,得,解得:或,所以.函数图象如下图所示:由图知,该函数有最大值3;由图知,函数图象与x轴负半轴的交点为,与y轴正半轴的交点为,因此函数图象在第二象限内所围成的图形的面积为:,由图象知可知函数有如下性质:函数图象为轴对称图形,对称轴为y轴;当时,y随x的增大而增大,当时,y随x增大而减小.故答案为(2)0;;(3)①最大值,3;②;③函数图象为轴对称图形,对称轴为y轴;当时,y随x的增大而增大,当时,y随x增大而减小.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图象,并研究和总结函数的性质;另外本题还考查了对绝对值的理解.21、见解析【分析】由角平分线的定义可得∠BCE=∠ACE,∠ACF=∠DCF,由平行线的性质可得∠BCE=∠CEF,∠CFE=∠DCF,利用等量代换可得∠ACE=∠CEF,∠CFE=∠ACF,根据等角对等边即可求得EH=CH=HF,进而求得EH=HF.【详解】∵CE、CF分别平分∠ACB、∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∵EF∥BC,∴∠BCE=∠CEF,∠CFE=∠DCF,∴∠ACE=∠CEF,∠CFE=∠ACF,∴EH=CH,CH=HF,∴EH=HF.【点睛】本题考查了平行线的性质,等腰三角形的判定和性质,根据等角对等边求解是解题关键.22、(1)x<-1;(2)x≤-3.【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1),∴,∴,∴;(2),解不等式①,得:;解不等式②,得:;∴不等式组的解集为:.【点睛】本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.23、(1)见解析;(2)存在,当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【分析】(1)由旋转的性质可得CD=CE,∠DCA=∠ECB,由等边三角形的判定可得结论;(2)分四种情况,由旋转的性质和直角三角形的性质可求解.【详解】(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)解:存在,①当0≤t<6s时,由旋转可知,,,若,由(1)可知,△CDE是等边三角形,∴,∴,∴,∵,∴,∵,∴,∴,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;②当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;③t=10s时,点D与点B重合,∴此时不存在;④当t>10s时,由旋转的性质可知,∠CBE=60°又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4cm,∴OD=14cm,∴t=14÷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学通关试题库(有答案)
- 2024年熟食制品项目资金筹措计划书代可行性研究报告
- 2024年造纸完成工段智能装备项目资金申请报告代可行性研究报告
- 2024常年采购协议条款与条件示例
- 2024年度建材销售协议格式
- 2024年专业门窗安装服务协议模板
- 2024公司B栋生产车间租赁协议
- 员工基本行为准则
- 银行外汇便利化政策落实情况总结
- 2024年规范二手公寓房产交易协议书
- 微型计算机原理与应用习题集及答案
- 河北省唐山市药品零售药店企业药房名单目录
- 喵喵老师制作 电子百拼的黑白电路图
- DB34-T 4010-2021 水利工程外观质量评定规程-高清现行
- 《整改报告》模板
- 送达地址确认书(样本)
- 江苏省历届中学生与社会作文大赛决赛试题及获奖范文(完整版)资料
- 六年级数学上册教案-分数乘法整理与练习 苏教版
- 《民航服务礼仪》项目五 地面服务礼仪
- 营业执照借用免责协议
- 小学道德与法治人教三年级上册第三单元安全护我成长-《遭遇陌生人》教案
评论
0/150
提交评论