版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12函数的应用(一)(1个知识点4种题型)【目录】倍速学习四种方法【方法一】脉络梳理法知识点解决函数应用问题的基本步骤【方法二】实例探索法题型1.一次函数的应用题型2.二次函数的应用【方法三】成果评定法【倍速学习五种方法】【方法一】脉络梳理法知识点解决函数应用问题的基本步骤常见的数学模型(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(2)反比例函数模型:f(x)=kx+b(k,b为常数,k≠(3)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(4)幂函数模型:f(x)=axn+b(a,b,n为常数,a≠0,n≠1);(5)分段函数模型:这个模型实则是以上两种或多种模型的综合,因此应用也十分广泛.解答函数实际应用问题时,一般要分四步进行第一步:分析、联想、转化、抽象;第二步:建立函数模型,把实际应用问题转化为数学问题;第三步:解答数学问题,求得结果;第四步:把数学结果转译成具体问题的结论,做出解答.而这四步中,最为关键的是把第二步处理好.只要把函数模型建立妥当,所有的问题即可在此基础上迎刃而解.【方法二】实例探索法题型1.一次函数的应用【例1】某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30000.而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒()A.2000套 B.3000套C.4000套 D.5000套【变式】.如图所示,这是某通讯公司规定的打某国际长途所需要付的费y(元)与通话时间t(分钟)之间的函数关系图象.根据图象填空:①通话2分钟,需要付费________元;②通话5分钟,需要付费________元;③如果t≥3,则费y(元)与通话时间t(分钟)之间的函数关系式为________.【例2】某通信公司为了配合客户的不同需要,现设计A,B两种优惠方案,这两种方案的应付话费y(元)与通话时间x(分钟)之间的关系如图所示(实线部分).(注:图中MN∥CD)(1)若通话时间为2小时,则按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B才会比方案A优惠?【变式】在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定该店经营的利润,首先保证企业乙的全体职工每月最低生活开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价每件14元;②该店月销售量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?【例3】为了发展电信事业,方便用户,电信公司对移动采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费用y(元)的关系如图所示.(1)分别求出通话费用y1,y2与通话时间x之间的函数解析式;(2)请帮助用户计算在一个月内使用哪种卡便宜.【变式】某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是定价的一次函数,则这个函数解析式为________.题型2.二次函数的应用【例4】某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;(3)当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?【变式】A,B两城相距100km,在两地之间距A城xkm处D地建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得少于10km,已知每个城市的供电费用与供电距离的平方和供电量之积成正比,比例系数λA城供电量为20亿度/月,B城为10亿度/月.(1)把A,B两城月供电总费用y(万元)表示成x(km)的函数,并求定义域;(2)核电站建在距A城多远,才能使供电总费用最小.【例5】某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t-eq\f(1,2)t2(万元).(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;(2)当这种产品的年产量为多少时,当年所得利润最大?【变式1】已知A、B两地相距150千米,某人开汽车以60千米/时的速度从A地到B地,在B地停留1小时后再以50千米/时的速度返回A地.(1)把汽车离开A地的距离x(千米)表示为时间t(小时)的函数;(2)求汽车行驶5小时与A地的距离.【变式2】大气中的温度随着高度的上升而降低,根据实测的结果上升到12km为止温度的降低大体上与升高的距离成正比,在12km以上温度一定,保持在-55℃.(1)当地球表面大气的温度是a℃时,在xkm的上空为y℃,求a、x、y间的函数关系式;(2)问当地表的温度是29℃时,3km上空的温度是多少?【例6】经市场调查,某城市的一种小商品在过去的近20天内的日销售量(件)与价格(元)均为时间t(天)的函数,且日销售量近似满足g(t)=80-2t(件),价格近似满足于f(t)=eq\b\lc\{(\a\vs4\al\co1(15+\f(1,2)t(0≤t≤10),,25-\f(1,2)t(10<t≤20)))(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.【变式】某种商品在30天内每件的销售价格P(元)与时间t(t∈N+)(天)的函数关系用如图的两条线段表示,该商品在30天内日销售量Q(件)与时间t(t∈N+)(天)之间的关系如下表:t/天5102030Q/件35302010(1)根据提供的图象(如图),写出该商品每件的销售价格P与时间t的函数关系式;(2)根据上表提供的数据,写出日销售量Q与时间t的一个函数关系式;(3)求该商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天(日销售金额=每件的销售价格×日销售量).与二次函数的应用【例7】(1)某药厂研制出一种新型药剂,投放市场后其广告投入x(万元)与药品利润y(万元)存在的关系为y=xα(α为常数),其中x不超过5万元.已知去年投入广告费用为3万元时,药品利润为27万元,若今年广告费用投入5万元,预计今年药品利润为________万元.(2)商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:①商场要获取最大利润,羊毛衫的标价应定为每件多少元?②通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?【变式】据市场分析,烟台某海鲜加工公司,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.(1)写出月总成本y(万元)关于月产量x(吨)的函数关系;(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?【方法三】成果评定法一、单选题1.(2023·全国·高一专题练习)你见过古人眼中的烟花吗?那是朱淑真元宵夜的“火树银花触目红”,是隋炀帝眼中的“灯树千光照,花焰七枝开”.烟花,虽然是没有根的花,是虚幻的花,却在达到最高点时爆裂,用其灿烂的一秒换来人们真心的喝彩.已知某种烟花距地面的高度(单位:米)与时间(单位:秒)之间的关系式为,则烟花在冲击后爆裂的时刻是(
)A.第4秒 B.第5秒 C.第秒 D.第3秒2.(2023秋·辽宁大连·高一校联考阶段练习)某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是(
)A. B.C. D.3.(2023·全国·高一专题练习)某企业一个月生产某种商品万件时的生产成本为(万元),每件商品售价为元,假设每月所生产的产品能全部售完.当月所获得的总利润用(万元)表示,用表示当月生产商品的单件平均利润,则下列说法正确的是(
)A.当生产万件时,当月能获得最大总利润万元B.当生产万件时,当月能获得最大总利润万元C.当生产万件时,当月能获得单件平均利润最大为元D.当生产万件时,当月能获得单件平均利润最大为元4.(2023·全国·高一专题练习)某商场在国庆期间举办促销活动,规定:顾客购物总金额不超过400元,不享受折扣;若顾客的购物总金额超过400元,则超过400元部分分两档享受折扣优惠,折扣率如下表所示:可享受折扣优惠的金额折扣率不超过400元部分超过400元部分若某顾客获得65元折扣优惠,则此顾客实际所付金额为(
)A.935元 B.1000元 C.1035元 D.1100元5.(2023·全国·高一专题练习)为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”.计费方法如表格所示:若某户居民本月交纳的水费为48元,则此户居民本月用水量是(
)每户每月用水量水价不超过的部分3元超过但不超过的部分6元超过的部分9元A. B. C. D.6.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟C.4.00分钟7.网上购鞋常常看到下面这样一张表,第一行可以理解为脚的长度,第二行是我们习惯称呼的“鞋号”中国鞋码实际标准(mm)220225230235240245250255260265中国鞋码习惯叫法(号)34353637383940414243习惯称为“30号”的童鞋,对应的脚实际尺寸为多少毫米()A.150 B.200C.1808.国家规定个人稿费纳税办法是不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11.2%纳税.已知某人出版一本书共纳税420元,则这个人应得稿费(扣税前)为()A.2800元 B.3000元C.3800元 D.3818元二、多选题9.(2023秋·全国·高一随堂练习)(多选)甲、乙两人在一次赛跑中,路程y与时间x的函数关系如下图所示,则下列说法不正确的是(
)A.甲比乙先出发 B.乙比甲跑的路程多C.甲、乙两人的速度相同 D.甲先到达终点10.(2023·全国·高一专题练习)某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,关于的函数图像如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后关于的函数图像.给出下列四种说法,其中正确的说法是(
)A.图(2)对应的方案是:提高票价,并提高固定成本B.图(2)对应的方案是:保持票价不变,并降低固定成本C.图(3)对应的方案是:提高票价,并保持固定成本不变D.图(3)对应的方案是:提高票价,并降低固定成本11.(2023秋·全国·高一随堂练习)几名大学生创业时经过调研选择了一种技术产品,生产此产品获得的月利润(单位:万元)与每月投入的研发经费(单位:万元)有关.已知每月投入的研发经费不高于16万元,且,利润率.现在已投入研发经费9万元,则下列判断正确的是(
)A.此时获得最大利润率 B.再投入6万元研发经费才能获得最大利润C.再投入1万元研发经费可获得最大利润率 D.再投入1万元研发经费才能获得最大利润12.(2023·全国·高一专题练习)用表示不超过的最大整数,例如,,.已知,则(
)A. B.为奇函数C.,使得 D.方程所有根的和为三、填空题13.生产某机器的总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获得最大利润时生产的机器为________台.14.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表所示:销售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部为获得最大利润,定价应为________元.15.某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.16.用一根长为12m的铁丝弯成一个矩形的铁框架,则能弯成的框架的最大面积是________m2.四、解答题17.某水厂的蓄水池中有400吨水,每天零点开始由池中放水向居民供水,同时以每小时60吨的速度向池中注水,若t小时内向居民供水总量为100eq\r(6t)(0≤t≤24),则每天何时蓄水池中的存水量最少.18.某市居民生活用水收费标准如下:用水量x/t每吨收费标准/元不超过2t部分m超过2t不超过4t部分3超过4t部分n已知某用户1月份用水量为8t,缴纳的水费为y元.(1)写出y关于x的函数解析式;(2)若某用户3月份用水量为3.5t,则该用户需缴纳的水费为多少元?(3)若某用户希望4月份缴纳的水费不超过24元,求该用户最多可以用多少水.19.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元.(1)写出每人需交费用y关于人数x的函数;(2)旅行团人数为多少时,旅行社可获得最大利润?20.经市场调查,某新开业的商场在过去一个月内(以30天计),顾客人数f(t)(千人)与时间t(天)的函数关系近似满足f(t)=4+eq\f(1,t)(t∈N*),人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=eq\b\lc\{(\a\vs4\al\co1(100t(1≤t≤7,t∈N*),,130-t(7<t≤30,t∈N*).))(1)求该商场的日收益w(t)(千元)与时间t(天)(1≤t≤30,t∈N*)的函数解析式;(2)求该商场日收益的最小值(千元).21.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;(2)当销售商一次订购
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育法规练习题及答案
- 2024年三坐标测量机项目资金筹措计划书代可行性研究报告
- 应急救援-综合(党群)管理岗
- 计算机平面设计专业调研报告
- 2024年企业业绩对赌协议模板指南
- 沪教版初一上学期期末化学试卷及答案指导
- 2024年书法家作品授权协议
- 2024年房产及土地交易协议样式
- 2024年企业办公空间装潢协议样本
- 2024年度外籍专家劳动协议范本
- 上海市普陀区2024-2025学年六年级(五四学制)上学期期中语文试题
- 2024黔东南州事业单位第二批遴选人员调减遴选历年高频难、易错点500题模拟试题附带答案详解
- 采伐树木合同模板
- 培训师破冰游戏大全课件
- 2024版成人术中非计划低体温预防与护理培训课件
- 期中测试卷-2024-2025学年统编版语文三年级上册
- 综合素质评价平台建设方案-2024
- Unit 2 How often do you exercise教学设计-2024-2025学年人教版英语八年级上册
- 24秋国家开放大学《当代中国政治制度》形考任务1-4参考答案
- 消防救生照明线标准解析
- GB/T 44395-2024激光雷达测风数据可靠性评价技术规范
评论
0/150
提交评论