第十一章 第6课时 专题强化:带电粒子在组合场中的运动-2025物理大一轮复习讲义人教版_第1页
第十一章 第6课时 专题强化:带电粒子在组合场中的运动-2025物理大一轮复习讲义人教版_第2页
第十一章 第6课时 专题强化:带电粒子在组合场中的运动-2025物理大一轮复习讲义人教版_第3页
第十一章 第6课时 专题强化:带电粒子在组合场中的运动-2025物理大一轮复习讲义人教版_第4页
第十一章 第6课时 专题强化:带电粒子在组合场中的运动-2025物理大一轮复习讲义人教版_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第6课时专题强化:带电粒子在组合场中的运动目标要求1.掌握带电粒子在磁场与磁场的组合场中的运动规律。2.掌握带电粒子在电场与磁场的组合场中的运动规律。1.组合场:电场与磁场各位于一定的区域内,并不重叠,或在同一区域,电场、磁场交替出现。2.分析思路(1)画运动轨迹:根据受力分析和运动学分析,大致画出带电粒子的运动轨迹图。(2)找关键点:确定带电粒子在场区边界的速度(包括大小和方向)是解决该类问题的关键。(3)划分过程:将带电粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理。3.常见带电粒子的运动及解题方法考点一磁场与磁场的组合磁场与磁场的组合问题实质就是两个有界磁场中的圆周运动问题,带电粒子在两个磁场中的速度大小相同,但轨迹半径和运动周期往往不同。解题时要充分利用两段圆弧轨迹的衔接点与两圆心共线的特点,进一步寻找边角关系。例1(2023·河南洛阳市一模)如图所示,三块挡板围成截面边长L=1.2m的等边三角形区域,C、P、Q分别是MN、AM和AN中点处的小孔,三个小孔处于同一竖直面内,MN水平,MN上方是竖直向下的匀强电场,电场强度E=400N/C。三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B1;三角形AMN以外和MN以下区域有垂直纸面向外的匀强磁场,磁感应强度大小为B2=3B1。现将一比荷eq\f(q,m)=108C/kg的带正电的粒子,从C点正上方2m处的O点由静止释放,粒子从MN上的小孔C进入三角形内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入三角形外部磁场。已知粒子最终又回到了O点。设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3。求:(1)磁感应强度B1的大小;(2)粒子第一次回到O点的过程,在磁场B2中运动的时间。答案(1)eq\f(2,3)×10-2T(2)5.5×10-6s解析(1)粒子从O到C在电场中加速,则由动能定理得Eqx=eq\f(1,2)mv2解得v=4×105m/s带电粒子在磁场中运动轨迹如图所示由几何关系可知R1=eq\f(L,2)=0.6m由qvB1=meq\f(v2,R1)代入数据解得B1=eq\f(2,3)×10-2T(2)由题可知B2=3B1=2×10-2T,则qvB2=meq\f(v2,R2)则R2=eq\f(R1,3)=0.2m,在磁场B2中的运动周期为T2=eq\f(2πR2,v)=eq\f(2πm,qB2)在磁场B2中的运动时间为t=eq\f(180°+300°+180°,360°)T2=eq\f(11π,6)×10-6s=5.5×10-6s。考点二电场与磁场的组合1.先电场后磁场先电场后磁场的几种常见情形(1)带电粒子先在匀强电场中做匀加速直线运动,然后垂直磁场方向进入匀强磁场做匀速圆周运动,如图甲。(2)带电粒子先在匀强电场中做类平抛运动,然后垂直磁场方向进入磁场做匀速圆周运动,如图乙。2.先磁场后电场先磁场后电场的几种常见情形常见情境进入电场时粒子速度方向与电场方向平行进入电场时粒子速度方向与电场方向垂直进入电场时粒子速度方向与电场方向成一定角度(非直角)运动示意图在电场中的运动性质加速或减速直线运动类平抛运动类斜抛运动分析方法动能定理或牛顿运动定律结合运动学公式平抛运动知识,运动的合成与分解斜抛运动知识,运动的合成与分解例2(2023·辽宁卷·14)如图,水平放置的两平行金属板间存在匀强电场,板长是板间距离的eq\r(3)倍。金属板外有一圆心为O的圆形区域,其内部存在磁感应强度大小为B、方向垂直于纸面向外的匀强磁场。质量为m、电荷量为q(q>0)的粒子沿中线以速度v0水平向右射入两板间,恰好从下板边缘P点飞出电场,并沿PO方向从图中O′点射入磁场。已知圆形磁场区域半径为eq\f(2mv0,3qB),不计粒子重力。(1)求金属板间电势差U;(2)求粒子射出磁场时与射入磁场时运动方向间的夹角θ;(3)仅改变圆形磁场区域的位置,使粒子仍从图中O′点射入磁场,且在磁场中的运动时间最长。定性画出粒子在磁场中的运动轨迹及相应的弦,标出改变后的圆形磁场区域的圆心M。答案(1)eq\f(mv02,3q)(2)eq\f(π,3)(或60°)(3)见解析图解析(1)设板间距离为d,则板长为eq\r(3)d,带电粒子在板间做类平抛运动,两板间的电场强度为E=eq\f(U,d),根据牛顿第二定律得qE=ma,解得a=eq\f(qU,md)设粒子在平板间的运动时间为t0,根据类平抛运动的规律得eq\f(d,2)=eq\f(1,2)at02,eq\r(3)d=v0t0联立解得U=eq\f(mv02,3q)(2)设粒子出电场时与水平方向夹角为α,则有tanα=eq\f(at0,v0)=eq\f(\r(3),3),故α=eq\f(π,6)则出电场时粒子的速度为v=eq\f(v0,cosα)=eq\f(2\r(3),3)v0粒子出电场后做匀速直线运动,接着进入磁场,根据牛顿第二定律有qvB=meq\f(v2,r),解得r=eq\f(mv,qB)=eq\f(2\r(3)mv0,3qB)已知圆形磁场区域半径为R=eq\f(2mv0,3qB),故r=eq\r(3)R粒子沿PO方向射入磁场,轨迹如图所示,即沿半径方向射入磁场,故粒子将沿半径方向射出磁场,粒子射出磁场时与射入磁场时运动方向的夹角为θ,则粒子在磁场中运动圆弧轨迹对应的圆心角也为θ,由几何关系可得θ=2α=eq\f(π,3),故粒子射出磁场时与射入磁场时运动方向的夹角为eq\f(π,3)(或60°);(3)粒子在该磁场中运动的半径与圆形磁场半径关系为r=eq\r(3)R,根据几何关系可知,粒子在该磁场中运动的轨迹一定为劣弧,故劣弧所对应轨迹圆的弦为磁场圆的直径时粒子在磁场中运动的时间最长,则相对应的运动轨迹以及圆心M的位置如图所示。例3(2023·福建龙岩市第一次质检)如图所示,在xOy平面(纸面)内,x>0空间存在方向垂直纸面向外的匀强磁场,第三象限空间存在方向沿x轴正方向的匀强电场。一质量为m、电荷量为q的带正电粒子(不计重力),以大小为v、方向与y轴正方向的夹角为θ=60°的速度沿纸面从坐标为(0,eq\r(3)L)的P1点进入磁场中,然后从坐标为(0,-eq\r(3)L)的P2点进入电场区域,最后从x轴上的P3点(图中未画出)垂直于x轴射出电场。求:(1)磁场的磁感应强度大小B;(2)粒子从P1点运动到P2点所用的时间t;(3)电场强度的大小E。答案(1)eq\f(mv,2qL)(2)eq\f(8πL,3v)(3)eq\f(mv2,4qL)解析(1)带电粒子在磁场中的运动轨迹如图所示,其圆心为O1,对应轨道半径为R,由几何关系可得Rsinθ=eq\r(3)L,解得R=2L由洛伦兹力提供向心力有qvB=eq\f(mv2,R)联立可得B=eq\f(mv,2qL)(2)带电粒子从P1点运动到P2点所用的时间为t=eq\f(2π-2θ,2π)T,T=eq\f(2πR,v)=eq\f(4πL,v)联立可得t=eq\f(8πL,3v)(3)设带电粒子在电场中的运动时间为t′,由运动的合成与分解有vcosθ·t′=eq\r(3)L,vsinθ-at′=0由牛顿第二定律有qE=ma联立可得E=eq\f(mv2,4qL)。例4(2021·广东卷·14)如图是一种花瓣形电子加速器简化示意图,空间有三个同心圆a、b、c围成的区域,圆a内为无场区,圆a与圆b之间存在辐射状电场,圆b与圆c之间有三个圆心角均略小于90°的扇环形匀强磁场区Ⅰ、Ⅱ和Ⅲ。各区磁感应强度恒定,大小不同,方向均垂直纸面向外。电子以初动能Ek0从圆b上P点沿径向进入电场,电场可以反向,保证电子每次进入电场即被全程加速,已知圆a与圆b之间电势差为U,圆b半径为R,圆c半径为eq\r(3)R,电子质量为m,电荷量为e,忽略相对论效应,取tan22.5°=0.4。(1)当Ek0=0时,电子加速后均沿各磁场区边缘进入磁场,且在电场内相邻运动轨迹的夹角θ均为45°,最终从Q点出射,运动轨迹如图中带箭头实线所示,求Ⅰ区的磁感应强度大小、电子在Ⅰ区磁场中的运动时间及在Q点出射时的动能;(2)已知电子只要不与Ⅰ区磁场外边界相碰,就能从出射区域出射。当Ek0=keU时,要保证电子从出射区域出射,求k的最大值。答案(1)eq\f(5,R)eq\r(\f(mU,e))eq\f(πR,4)eq\r(\f(m,eU))8eU(2)eq\f(13,6)解析(1)电子在电场中加速有2eU=eq\f(1,2)mv2,在Ⅰ区磁场中,由几何关系可得r=Rtan22.5°=0.4R,根据洛伦兹力提供向心力有B1ev=meq\f(v2,r)联立解得B1=eq\f(5,R)eq\r(\f(mU,e))电子在Ⅰ区磁场中的运动周期为T=eq\f(2πr,v)由几何关系可得,电子在Ⅰ区磁场中运动轨迹对应的圆心角为φ=eq\f(5,4)π,电子在Ⅰ区磁场中的运动时间为t=eq\f(φ,2π)T,联立解得t=eq\f(πR,4)eq\r(\f(m,eU))电子从P到Q在电场中共加速8次,故在Q点出射时的动能为Ek=8eU(2)设电子在Ⅰ区磁场中做匀速圆周运动的最大半径为rm,此时圆周的轨迹与Ⅰ区磁场边界相切,由几何关系可得(eq\r(3)R-rm)2=R2+rm2,解得rm=eq\f(\r(3),3)R根据洛伦兹力提供向心力有B1evm=meq\f(vm2,rm)2eU=eq\f(1,2)mvm2-keU,联立解得k=eq\f(13,6)。课时精练1.如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为eq\f(1,2)B和B、方向均垂直于纸面向外的匀强磁场。一质量为m、电荷量为q(q>0)的粒子垂直于x轴射入第二象限,随后垂直于y轴进入第一象限,最后经过x轴离开第一象限。粒子在磁场中运动的时间为()A.eq\f(5πm,6qB)B.eq\f(7πm,6qB)C.eq\f(11πm,6qB)D.eq\f(13πm,6qB)答案B解析设带电粒子进入第二象限的速度为v,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R1和R2,由洛伦兹力提供向心力,有qvB=meq\f(v2,R)、T=eq\f(2πR,v),可得R1=eq\f(mv,qB)、R2=eq\f(2mv,qB)、T1=eq\f(2πm,qB)、T2=eq\f(4πm,qB),带电粒子在第二象限中运动的时间为t1=eq\f(T1,4),在第一象限中运动的时间为t2=eq\f(θ,2π)T2,又由几何关系有cosθ=eq\f(R2-R1,R2)=eq\f(1,2),可得t2=eq\f(T2,6),则粒子在磁场中运动的时间为t=t1+t2,联立以上各式解得t=eq\f(7πm,6qB),选项B正确,A、C、D错误。2.(多选)(2023·辽宁沈阳市模拟)圆心为O、半径为R的圆形区域内存在磁感应强度大小为B、方向垂直纸面的匀强磁场(未画出),磁场边缘上的A点有一带正电粒子源,半径OA竖直,MN与OA平行,且与圆形边界相切于B点,在MN的右侧有范围足够大且水平向左的匀强电场,电场强度大小为E。当粒子的速度大小为v0且沿AO方向时,粒子刚好从B点离开磁场,不计粒子重力和粒子间的相互作用,下列说法正确的是()A.圆形区域内磁场方向垂直纸面向外B.粒子的比荷为eq\f(v0,BR)C.粒子在磁场中运动的总时间为eq\f(πR,2v0)D.粒子在电场中运动的总时间为eq\f(2BR,E)答案ABD解析根据题意可知,粒子从A点进入磁场从B点离开磁场时,根据左手定则可知,圆形区域内磁场方向垂直纸面向外,故A正确;根据题意可知,粒子在磁场中的运动轨迹如图甲所示,根据几何关系可知,粒子做圆周运动的半径为R,粒子在磁场中运动轨迹所对圆心角为eq\f(π,2),根据洛伦兹力提供向心力有qv0B=meq\f(v02,R),可得eq\f(q,m)=eq\f(v0,BR),故B正确;根据题意可知,粒子从B点进入电场之后,先向右做减速运动,再向左做加速运动,再次到达B点时,速度的大小仍为v0,再次进入磁场,运动轨迹如图乙所示。则粒子在磁场中运动的总时间为t磁=eq\f(T,2)=eq\f(πR,v0),故C错误;粒子在电场中,根据牛顿第二定律有Eq=ma,解得a=eq\f(Eq,m)=eq\f(Ev0,BR),根据v0=at结合对称性可得,粒子在电场中运动的总时间为t电=eq\f(2v0,a)=eq\f(2BR,E),故D正确。3.(2024·广东省联考)如图所示,在竖直平面内建立平面直角坐标系xOy,第二象限内存在沿y轴负方向的匀强电场,第三象限内存在磁感应强度大小为B、方向垂直于坐标平面向里的匀强磁场。M、N两个竖直平行金属板之间的电压为U,一质量为m、电荷量为q的带正电的粒子(不计粒子重力)从靠近N板的S点由静止开始做加速运动,从电场的右边界y轴上的A点水平向左垂直于y轴射入电场,经x轴上的C点与x轴负方向成θ=60°角进入磁场,最后从y轴上的D点垂直于y轴射出磁场,求:(1)A、C两点间的电势差UAC和粒子在磁场中运动的轨道半径r;(2)粒子从A点运动到C点所用时间和从C点运动到D点所用时间的比值。答案(1)3Ueq\f(2,B)eq\r(\f(2mU,q))(2)eq\f(3\r(3),2π)解析(1)设粒子运动到A点射入电场的速度大小为v0,由动能定理得qU=eq\f(1,2)mv02,解得v0=eq\r(\f(2qU,m))设粒子经过C点时速度为v,根据题意可得eq\f(v0,v)=cosθ解得v=2v0,粒子从A点运动到C点的过程,有qUAC=eq\f(1,2)mv2-eq\f(1,2)mv02,解得UAC=3U如图所示,粒子在磁场中以O′为圆心做匀速圆周运动,半径为O′C,由洛伦兹力提供向心力有qBv=meq\f(v2,r),解得r=eq\f(2,B)eq\r(\f(2mU,q))(2)由几何关系得OC=rsinθ,设粒子在电场中运动的时间t1,根据题意有OC=v0t1,解得t1=eq\f(\r(3)m,qB)粒子在磁场中做匀速圆周运动的周期T=eq\f(2πr,v)设粒子在磁场中运动的时间为t2,有t2=eq\f(π-θ,2π)T解得t2=eq\f(2πm,3qB),粒子从A点运动到C点所用时间和从C点运动到D点所用时间的比值eq\f(t1,t2)=eq\f(3\r(3),2π)。4.如图所示,xOy平面内,OP与x轴正方向的夹角为θ=53°,在xOP范围内(含边界)存在垂直于坐标平面向里的匀强磁场,磁感应强度大小为B=0.1T。第二象限有平行于y轴向下的匀强电场,电场强度大小为E=eq\f(83,40)×105V/m,一带电微粒以速度v0=5×106m/s从x轴上a(L,0)点平行于OP射入磁场,并从OP上的b点垂直于OP离开磁场,与y轴交于c点,最后回到x轴上的d点,图中b、d两点未标出,已知L=eq\f(5,4)m,sin53°=eq\f(4,5),cos53°=eq\f(3,5),不计微粒的重力,求:(1)微粒的比荷eq\f(q,m);(2)d点与O点的距离l;(3)仅改变磁场强弱而其他条件不变,当磁感应强度Bx大小满足什么条件时,微粒能到达第四象限。答案(1)5×107C/kg(2)4m(3)Bx≥0.2T解析(1)微粒的运动轨迹如图所示,微粒在磁场中做匀速圆周运动,由几何关系得r=Lsin53°=1m由牛顿第二定律得qv0B=meq\f(v02,r)代入数据解得eq\f(q,m)=5×107C/kg(2)微粒进入电场后做类斜抛运动,由几何关系得yOc=eq\f(Lcos53°+r,sin53°)在y轴方向有yOc=-v0tcos53°+eq\f(1,2)×eq\f(qE,m)t2在x轴方向有l=v0tsin53°,解得l=4m(3)微粒在磁场中做匀速圆周运动的轨迹与边界OP相切时,恰好能到达第四象限。由几何关系知R=eq\f(1,2)Lsin53°由牛顿第二定律得qv0B1=meq\f(v02,R)解得B1=0.2T,故当磁感应强度Bx≥0.2T时,微粒能到达第四象限。5.(2024·江西省十校联考)如图所示,在平面直角坐标系xOy的第一、二象限内有垂直于坐标平面向外的匀强磁场,在第三、四象限内有平行于坐标平面斜向下的匀强电场,电场方向与x轴负方向的夹角为45°,从坐标原点O向第二象限内射出一个质量为m、电荷量为-q的带电粒子,粒子射出的初速度大小为v0,方向与x轴负方向的夹角也为45°,此粒子从O点射出后第三次经过x轴的位置P点离O点的距离为d,粒子第二次在电场中运动后恰好从O点离开电场,不计粒子重力,求:(1)磁感应强度B的大小;(2)电场强度E的大小;(3)粒子从O点射出到第一次回到O点所经历的时间。答案(1)eq\f(2\r(2)mv0,qd)(2)eq\f(2\r(2)mv02,qd)(3)eq\f(\r(2)d2+π,2v0)解析(1)设粒子第一次在磁场中做圆周运动的半径为r,带负电粒子运动轨迹如图所示由几何关系2eq\r(2)r=d,即r=eq\f(\r(2),4)d,由牛顿第二定律可得qv0B=meq\f(v02,r),可得B=eq\f(2\r(2)mv0,qd)(2)粒子第二次进入电场做类平抛运动,则eq\f(\r(2),2)d=v0t1,eq\f(\r(2),2)d=eq\f(1,2)at12,qE=ma解得t1=eq\f(\r(2)d,2v0),E=eq\f(2\r(2)mv02,qd)(3)粒子在磁场中运动的时间t2=T=eq\f(2πr,v0)=eq\f(\r(2)πd,2v0),粒子第一次在电场中运动的时间t3=eq\f(2v0,a)其中a=eq\f(Eq,m)=eq\f(2\r(2)v02,d),则t3=eq\f(\r(2)d,2v0),则粒子从O点射出到第一次回到O点所经历的时间t=t1+t2+t3=eq\f(\r(2)d2+π,2v0)。6.(2024·云南昆明市期中)如图所示,质量为m、带电荷量为q(q>0)的粒子,从坐标原点O以初速度v0沿x轴正方向射入第一象限内的电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论