版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2节动量守恒定律及其应用一、动量守恒定律1.内容.不受外力矢量和
如果一个系统____________,或者所受外力的__________为零,这个系统的总动量保持不变.2.表达式.p′m1v1′+m2v2′-Δp2
(1)p=______,系统相互作用前总动量p等于相互作用后的总动量p′. (2)m1v1+m2v2=______________,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和. (3)Δp1=__________,相互作用的两个物体动量的变量等大反向.3.动量守恒的条件.(1)理想守恒:系统不受外力或所受外力的矢量和为零,则系统动量守恒.(2)近似守恒:系统受到的外力矢量和不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)某一方向上守恒:系统在某个方向上所受外力矢量和为零时,系统在该方向上动量守恒.二、碰撞现象相互作用力守恒
1.碰撞:两个或两个以上的物体在相遇的极短时间内产生非常大的____________,而其他的相互作用力相对来说显得微不足道的过程,所以在爆炸过程中,系统的总动量守恒. 2.弹性碰撞:如果碰撞过程中机械能________,这样的碰撞叫做弹性碰撞.3.非弹性碰撞:如果碰撞过程中机械能________,这样的碰撞叫做非弹性碰撞.不守恒相同
4.完全非弹性碰撞:碰撞过程中物体的形变完全不能恢复,以致两物体合为一体一起运动,即两物体在非弹性碰撞后以_______速度运动,系统有机械能损失.三、反冲的特点内力远大于
1.定义:如果一个静止的物体在________的作用下分裂为两部分,一部分向某个方向运动,另一部分必然向相反的方向运动.这个现象叫做反冲. 2.反冲运动的特点及遵循的规律. (1)特点:物体间作用力与反作用力产生的效果. (2)遵循的规律:反冲运动是内力作用的结果,虽然有时系统所受的合外力不为零,但由于系统内力________外力,所以可以认为系统的总动量是守恒的.【基础自测】1.判断下列题目的正误.(1)只要系统合外力做功为零,系统动量就守恒.((2)动量守恒的过程中,机械能只能不变或减少.((3)若某个方向合外力为零,则该方向动量守恒.()))(4)若在光滑水平面上的两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相同.()(5)完全非弹性碰撞中,机械能损失最多.()答案:(1)×
(2)×
(3)√
(4)√
(5)√
2.(2021年黑龙江哈尔滨月考)一辆小车静止在光滑的水平面上,小车立柱上用一条长为L的轻绳拴一个小球,小球与悬点在同一水平面上,轻绳拉直后小球从A点静止释放,如图6-2-1,不计一切阻力,下面说法中正确的是()A.小球的机械能守恒,动量也守恒B.小车的机械能守恒,动量也守恒C.小球和小车组成的系统机械能守恒,水平方向上动量守恒图6-2-1D.小球和小车组成的系统机械能不守恒,总动量不守恒答案:C
3.质量为m1=1kg和m2(未知)的两个物体在光滑的水平面上正碰,碰撞时间不计,其x-t(位移—时间)图像如图6-2-2所示,则可知该碰撞属于()A.非弹性碰撞B.弹性碰撞C.完全非弹性碰撞图6-2-2D.条件不足,不能确定答案:B
4.冰车原先在光滑的水平冰面上匀速滑行,若一人在冰车上先后向前和向后各抛出一个沙包,两沙包的质量和对地速度大小都)相同,沙包都抛出去之后,冰车的速率与原来相比( A.增大了
B.减少了
C.不变
D.可能增大也可能减少
答案:A热点1动量守恒定律的理解和基本应用考向1动量守恒定律的理解[热点归纳]动量守恒定律的四个特性:相对性公式中
v1、v2、v1′、v2′必须相对于同一个惯性系同时性公式中v1、v2是在相互作用前同一时刻的速度,v1′、v2′是在相互作用后同一时刻的速度矢量性应先选取正方向,凡是与选取的正方向一致的动量为正值,相反为负值普适性不仅适用于低速宏观系统,也适用于高速微观系统【典题1】(多选)对于如图6-2-3甲、乙、丙、丁所反映的物理过程,下列说法正确的是()甲乙丙丁
图6-2-3 A.图甲中子弹射入光滑水平面上的木块的过程中,子弹和木块组成的系统动量守恒,机械能减少
B.图乙中M、N两木块放在光滑水平面上,剪断M、N两木块之间的细线,在弹簧恢复原长的过程中,M、N与弹簧组成的系统动量守恒,机械能增加C.图丙中两球匀速下降,细线断裂后,木球和铁球在水中运动的过程,两球组成的系统动量守恒,机械能不守恒D.图丁中木块沿放在光滑水平面上的斜面下滑,木块和斜面组成的系统在水平方向上动量守恒,机械能一定守恒
解析:甲图中,在光滑水平面上,子弹射入木块的过程中,子弹和木块组成的系统动量守恒,机械能有损失,A正确.乙图中M、N两木块放在光滑的水平面上,剪断束缚M、N两木块之间的细线,在弹簧恢复原长的过程中,M、N与弹簧组成的系统动量守恒,弹簧的弹性势能转化为两木块的动能,系统机械能守恒,B错误.丙图中,木球和铁球组成的系统匀速下降,说明两球所受水的浮力等于两球自身的重力,细线断裂后两球在水中运动的过程中,所受合外力为零,两球组成的系统动量守恒,由于水的浮力对两球做功,两球组成的系统机械能不守恒,C正确.丁图中,木块沿放在光滑水平面上的斜面下滑,木块和斜面组成的系统在水平方向上不受外力,水平方向上动量守恒,由于斜面可能不光滑,所以机械能可能有损失,D错误.答案:AC考向2动量守恒定律的应用
【典题2】(2023
年广东卷)如图6-2-4为某药品自动传送系统的示意图.该系统由水平传送带、竖直螺旋滑槽和与滑槽平滑连接的平台组成,滑槽高为3L,平台高为L.药品盒A、B依次被轻放在以速度v0
匀速运动的传送带上,在与传送带达到共速后,从M点进入滑槽,A刚好滑到平台最右端N点停下,随后滑下的B以2v0的速度与A发生正碰,碰撞时间极短,碰撞后A、B恰好落在桌面上圆盘内直径的两端.已知A、B的质量分别为m和2m,碰撞
擦因数为μ,重力加速度为g,A、B在滑至N点之前不发生碰撞,忽略空气阻力和圆盘的高度,将药品盒视为质点.求:
(1)A在传送带上由静止加速到与传送带共速所用的时间t. (2)B从M点滑至N点的过程中克服阻力图6-2-4做的功W. (3)圆盘的圆心到平台右端N点的水平距离s.解:(1)A在传送带上运动时的加速度a=μg由静止加速到与传送带共速所用的时间(2)B从M点滑至N点的过程中,根据动能定理有(3)A、B碰撞过程由动量守恒定律和能量关系可知2m×2v0=mv1+2mv2考向3某一方向动量守恒[热点归纳]
相互作用的两个物体受的合外力不为0,系统动量不守恒,但是若某个方向合外力为0,则系统在这个方向上动量守恒,可以在这个方向上列动量守恒的方程求解相关问题.如自由下落的木块被水平飞来的子弹击中,竖直方向由于重力作用合外力不为0,动量不守恒,而水平方向不受外力,满足动量守恒.再如光滑水平面上有一斜面,斜面上的物体沿斜面下滑的过程中,物体和斜面组成的系统水平方向动量守恒.
【典题3】(2022
年广东茂名模拟)如图6-2-5所示,在足够大的光滑水平面上停放着装有光滑弧形槽的小车,弧形槽的底端切线水平,一小球以大小为v0的水平速度从小车弧形槽的底端沿弧形槽上滑,恰好不从弧形槽的顶端离开.小车与小球的质量分别为2m、m,以弧形槽底端所在的水平面为参考平面.小球的最大重力势能为()图6-2-5
解析:小球到达弧形槽顶端时,小球与小车的速度相同(设共同速度大小为v),在小球沿小车弧形槽上滑的过程中,小球与小车组成的系统水平方向动量守恒,有mv0=3mv,根据机械能守恒答案:A考向4动量守恒的临界问题
【典题4】(2022
年广东联考)如图6-2-6所示,某冰雪游乐场,小朋友和小车均静止在足够大的水平地面上,小朋友将小车以大小v=12m/s的水平速度(相对地面)推向右侧的斜坡,小车在斜坡上运动一段时间后返回地面,小朋友接住小车后再次以速率v将小车推向斜坡,如此反复.小朋友与小车的质量分别为m1=30kg、m2=5kg,不计一切摩擦,不计小车经过斜坡底部时的机械能损失.求:图6-2-6(1)在小朋友第一次将小车推出的过程中,小朋友和小车组成的系统的动能增量ΔEk.(2)要使小朋友不能接住小车,小朋友推小车的次数.
解:(1)设向左为正方向,小朋友第一次将小车推出后的瞬间,小朋友的速度大小为v1,对小朋友第一次将小车推出的过程,根据动量守恒定律有m1v1=m2v解得v1=2m/s解得ΔEk=420J.(2)小车每次在斜坡上运动的过程中,斜坡对小车的水平冲量大小I=m2v-(-m2v)=2m2v.若小朋友第n次推小车后,两者的速率均为v,则此后小朋友不能接住小车,对小朋友与小车组成的系统,根据动量定理有nI=(m1+m2)v解得n=3.5,要使小朋友不能接住小车,小朋友推小车的次数为4.思路导引小朋友推车过程动量守恒,求出小朋友的速度,然后求出二者增加的动能.斜面光滑,小车推出后的速度与从斜面返回与小朋友作用的速度大小相等,每次推出小车,小朋友动量的增加量相等,假设推出n次后,根据动量守恒求得小朋友的速度大于小车的速度即可,临界情况是二者速度大小相等.热点2碰撞[热点归纳]1.碰撞遵循的三条原则.(1)动量守恒定律.(2)机械能不增加.(3)速度要合理.①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大(或两物体速度相等).②相向碰撞:碰撞后两物体的运动方向不可能都不改变(除非两物体碰撞后速度均为零).2.弹性碰撞讨论.(1)碰后速度的求解.考向1弹性碰撞
【典题5】某表演者用一个大球和一个小球,做一种名为“超级弹性碰撞”的实验,其中上面的小球被称为“超级弹球”.如图6-2-7所示,表演者将两球叠放在一起,从距地面高为h的位置由静止释放,假设大球先与地面碰撞以原速率反弹后再与小球碰撞,两球之间的碰撞无机械能损失且时间极短,且两球心的连线始终竖直,已知大球的质量为4m,小球的质量为m,重力加速度为g,将两球视为质点,忽略空气阻力,求:(1)该“超级弹球”第一次能够反弹的最大高度.(2)该“超级弹球”从开始下落到第一次反弹到最大高度所经历的时间.图6-2-7思路导引本题与常见的弹性碰撞不同.一般的弹性碰撞直接给出碰撞前的速度,然后应用动量守恒定律和机械能守恒定律求解碰撞后的速度.本题中的碰撞多了一个过程:先一起下落,落地瞬间,上面小球速度不变,下面小球速度等大反向.考向2非弹性碰撞
【典题6】(2023
年广东肇庆二模)如图6-2-8所示,竖直放置的两个完全相同的轻弹簧,一端固定于地面,另一端与质量为mB的物体B固定在一起,质量为mA
的物体A置于B中央位置的正上方H处.现让A由静止开始自由下落,随后和B发生碰撞,碰撞时间极短,碰撞后两物体粘在一起.已知A与B结合后经过时间t下降至最低点,A、B始终在同一竖直平面内运动,弹簧始终处于弹性限度内,不计空气阻力,重力加速度为g,求:(1)A与B碰撞后瞬间的速度大小v.(2)AB结合体从结合后至返回到碰撞点过程中的运动时间以及该过程中弹簧对物体B冲量的大小.图6-2-8
解:(1)设A与B碰撞前瞬间的速度大小为v0,A与B碰撞后瞬间的速度大小为v,由机械能守恒定律得(2)从碰撞后至返回到碰撞点的过程中,AB结合体做简谐运动.根据简谐运动的对称性,可得运动时间t总=2t思路导引A与B碰撞前的速度可由机械能守恒定律求得,A与B的碰撞为完全非弹性碰撞,碰撞后达到共速.AB结合体从结合后至返回到碰撞点过程中的运动时间可由简谐运动的对称性求得,该过程中弹簧对物体B的冲量难以根据力与时间的乘积求得,优先考虑应用动量定理求解.
考向3碰撞后运动状态可能性的判定
【典题7】(2022年广东广州二模)如图6-2-9所示,2022年北京冬奥会某次冰壶比赛,甲壶以速度v0与静止的乙壶发生正碰.已知冰面粗糙程度处处相同,两壶完全相同,从碰撞到两壶都静)止,乙壶的位移是甲壶的9倍,则(
图6-2-9A.两壶碰撞过程无机械能损失B.两壶碰撞过程动量变化量相同D.碰撞后瞬间,乙壶的速度为v0相同,从碰撞到两壶都静止,乙的位移是甲的9倍,设碰后两壶矢量,两壶碰撞过程动量变化量大小相同但方向相反,B错误.
答案:C作用原理反冲运动是系统内物体之间的作用力和反作用力产生的效果动量守恒反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律机械能增加反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加热点3反冲现象[热点归纳]
【典题8】皮划艇射击是一种比赛运动,比赛时,运动员站在静止的皮划艇上,持枪向岸上的枪靶水平射击.已知运动员(包括除子弹外的装备)及皮划艇的总质量为M,子弹的质量为m.假设射击过程中子弹的火药释放的总能量为E,且全部转化为动能,在陆地射击和在皮划艇上射击时,子弹的出射速度会有少许差异.陆地射击时子弹的出射速度为v1,子弹动能为Ek1;在皮划艇上射击时子弹的出射速度为v2,动能为Ek2,运动员及皮划艇的速度为v3,射击过程中可认为子弹、运动员及皮划艇组成的系统在水平方向动量守恒.下列关系式正确的是()解析:在陆地射击时,火药释放的能量全部转化为子弹的动
答案:D动量守恒由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒动能增加在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加位置不变爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动热点4爆炸[热点归纳]
【典题9】(2022
年广东深圳月考)燃放爆竹是我国传统民俗,春节期间,某人斜向上抛出一个爆竹,到最高点时速度大小为v0,方向水平向东,并炸开成质量相等的三块碎片a、b、c,其中碎片a的速度方向水平向东,忽略空气阻力,以下说法正确的是()A.炸开时,若碎片b的速度方向水平向西,则碎片c的速度方向可能水平向南B.炸开时,若碎片b的速度为零,则碎片c的速度方向一定水平向西C.炸开时,若碎片b的速度方向水平向北,则三块碎片一定同时落地D.炸开时,若碎片a、b的速度等大反向,则碎片c落地时的速度可能等于3v0
解析:到最高点时速度大小为v0,方向水平向东,则总动量向东.炸开时,若碎片b的速度方向水平向西,碎片c的速度方向水平向南,则违反动量守恒定律,A错误.炸开时,若碎片b的速度为零,根据动量守恒定律,碎片c的速度方向可能水平向东,B错误.三块碎片在竖直方向上均做自由落体运动,一定同时落地,C正确.炸开时,若碎片a、b的速度等大反向,根据动量守恒定律3mv0=mvc,解得
vc=3v0,碎片
c落地时速度的水平分量等于
3v0,其落地速度一定大于3v0,D错误.答案:C常见情景问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题人船模型1.模型特点.特点人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于
它们质量的反比,即
注意应用此关系时要注意一个问题:公式
v1、v2和
x一般都是相对地面而言的(续表)2.两个重要关系.
【典题10】有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测量它的质量.他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离d和船长L.已知他自身的质量为m,则船的质量为()A.m(L+d)
dB.m(L-d)
d
mLC.
dD.m(L+d)
L时间为t.则v=,v′=向,根据动量守恒定律得Mv-mv′=0,解得船的质量M=
解析:画出如图D28所示的草图.
设人走动时船的速度大小为v,人的速度大小为v′,船的质量为M,人从船尾走到船头所用d tL-d t,人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方图D28m(L-d)
d,B正确.
答案:B类型1A先与B发生作用,A、B作为一个整体再与C发生作用类型2A先与B、C整体发生作用,当B与C分离后,A再与其中之一发生作用
动量与能量综合的四大模型模型一三体二次作用模型“三体二次作用”是指题目情景涉及三个物体间发生两次不同的相互作用过程.
【典题11】(多选)竖直放置的轻弹簧下端固定在地上,上端与钢板连接,钢板处于静止状态,如图6-2-10所示.一物块从钢板正上方0.2m处的P点自由落下,打在钢板上(碰撞时间极短)并与钢板一起向下运动0.1m后到达最低点Q.已知物块和钢板的质量都为2kg,重力加速度大小g取10m/s2,下列说法正确的是()图6-2-10A.物块与钢板碰撞后的速度为1m/sB.物块与钢板碰撞后一起运动的加速度一直增大C.从P到Q的过程中,弹簧弹性势能的增加量为6JD.从P到Q的过程中,物块、钢板、弹簧组成的系统机械能守恒簧弹力小于两者的总重力,两者向下做加速度减小的加速运动.当弹簧弹力等于两者的总重力时,加速度为零,速度达到最大.继续向下运动的过程,弹簧弹力大于两者的总重力,两者向下做加速度增大的减速运动,可知物块与钢板碰撞后一起运动的加速度不是一直增大,B错误.从P到Q的过程中,根据能量守恒定律可知2×2×10×0.1J=6J,C正确.由于物块与钢板碰撞为完全非弹性碰撞,存在机械能损失,从P到Q的过程中,物块、钢板、弹簧组成的系统机械能不守恒,D错误.答案:AC模型二子弹打木块模型
若木块置于光滑水平面上,子弹和木块构成的系统不受外力作用,系统动量守恒,系统内力是一对相互作用的摩擦力,如图6-2-11所示.图6-2-11
设子弹质量为m,水平初速度为v0,置于光滑水平面上的木块质量为M.若子弹刚好穿过木块,则子弹和木块最终具有共同速度u.由动量守恒定律:mv0=(M+m)u①对于子弹,由动能定理:从图形中可得:s1-s2=L④
常用结论:子弹打木块模型中(木块放在光滑水平面上),摩擦力与相对位移的乘积等于系统动能的减少,也等于作用过程中产生的内能.
【典题12】(多选,2022年广东梅州一模)矩形滑块由不同材料的上、下两层黏合在一起组成,将其放在光滑的水平面上.质量为m的子弹以速度v水平射向滑块,若射击下层,子弹刚好不射出.若射击上层,则子弹刚好能射进一半厚度,如图6-2-12所示,上述两种情况相比较()甲乙图6-2-12A.子弹损失的动能一样多B.子弹与上层摩擦力较大C.子弹射击下层时系统产生的热量较多D.子弹射击上层时,从射入到共速所经历时间较长
解析:子弹射入滑块的过程中,将子弹和滑块看成一个整体,合外力为0,动量守恒,所以两种情况后子弹和滑块的速度相同,所以末动能相同,系统损失的动能一样多,产生的热量一样多,A正确,C错误.子弹射入下层滑块刚好不射出,射入上层滑块能进一半厚度,说明在上层所受的摩擦力比下层大,根据动量定理可知,两种情况冲量相同,子弹射击上层所受摩擦力大,所以从入射到共速所经历时间短,B正确,D错误.答案:AB模型图示模型特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能(2)若木块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大(完全非弹性碰撞拓展模型)模型三滑块—木板模型
【典题13】如图
6-2-13所示,足够长的小平板车B的质量为M,以水平速度v0
向右在光滑水平面上运动,与此同时,质量为m的小物体A从车的右端以水平速度v0
沿车的粗糙上表面向左运动.若物体与车面之间的动摩擦因数为μ,重力加速度大小为g,则在足够长的时间内()图6-2-13v0,若M>m,A所受的摩擦力为Ff=μmg,解析:规定向右为正方向,根据动量守恒定律有Mv0-mv0=(M+m)v,得v=M-mM+m答案:D思路导引A选项研究物体A,末速度为0时位移最大,B选项研究小车,末速度为0时,位移最大,应用动能定理求解.由动量守恒求出二者共同速度、动量的变化及摩擦力的冲量,由冲量得到作用时间.模型图示模型特点(1)动量守恒:两个物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒(2)机械能守恒:系统所受的外力为零或除弹簧弹力以外的内力不做功,系统机械能守恒(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型)(4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模型,相当于碰撞结束时)模型四滑块弹簧模型
【典题14】A、B两小球静止在光滑水平面上,用水平轻弹簧相连接,A、B两球的质量分别为m和M(m<M).若使A球获得瞬时速度v(如图6-2-14甲),弹簧压缩到最短时的长度为L1.若使B球获得瞬时速度v(如图乙),弹簧压缩到最短时的长度为L2,则)图6-2-14L1与L2的大小关系为(
甲
A.L1>L2
C.L1=L2
乙B.L1<L2D.不能确定
解析:当弹簧压缩到最短时,两球的速度相同,对题图甲,取A的初速度方向为正方向,由动量守恒定律得mv=(m+M)v1,由机械能守恒答案:C“圆弧轨道+滑块(小球)”模型1.模型图(如图6-2-15所示).图6-2-15
2.模型特点. (1)最高点:m与M具有共同水平速度,且m不可能从此处离开轨道,系统水平方向动量守恒,系统机械能守恒.mv0=(M+m)v共,(2)最低点:m与M分离点.水平方向动量守恒,系统机械能守
【典题15】(2023年广东梅州三模)如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文主题教学计划例文
- 生产工作计划集锦
- 实验学校2025工作计划
- 八年级上册生物教学计划例文
- 有关暑期计划书
- 医院医生工作计划文档
- 放学期小学美术教研组工作计划范文
- 《多熟种植》课件
- 《型玻璃完美版》课件
- 航次租船合同的权利义务
- DL∕T 5767-2018 电网技术改造工程工程量清单计价规范
- 国有企业股权转让协议(2024版)
- 《民用爆炸物品企业安全生产标准化实施细则》解读
- 2024年浙江省安全生产科学研究有限公司招聘笔试冲刺题(带答案解析)
- 中央2024年水利部综合事业局招聘笔试历年典型考题及考点附答案解析
- 机械产品数字化设计智慧树知到期末考试答案章节答案2024年九江职业大学
- 装修增项补充合同协议书
- 项目经理承包责任制
- 宝安区义务教育入学信用承诺书模板
- 书画装裱与修复技术智慧树知到期末考试答案章节答案2024年四川艺术职业学院
- 酱油投资项目可行性报告
评论
0/150
提交评论