2023届北京市海淀区首师大附数学八上期末学业质量监测模拟试题含解析_第1页
2023届北京市海淀区首师大附数学八上期末学业质量监测模拟试题含解析_第2页
2023届北京市海淀区首师大附数学八上期末学业质量监测模拟试题含解析_第3页
2023届北京市海淀区首师大附数学八上期末学业质量监测模拟试题含解析_第4页
2023届北京市海淀区首师大附数学八上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下面式子从左边到右边的变形中是因式分解的是()A. B.C. D.2.下列计算正确的是()A.=-9 B.=±5 C.=-1 D.(-)2=43.下列各式由左到右的变形中,属于分解因式的是()A.x2﹣16+6x=(x+4)(x﹣4)+6xB.10x2﹣5x=5x(2x﹣1)C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2D.a(m+n)=am+an4.如图,AB∥CD,∠2=36°,∠3=80°,则∠1的度数为()A.54° B.34° C.46° D.44°5.化简的结果是()A. B. C. D.6.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30° B.15° C.25° D.20°7.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是.A. B. C. D.8.如图,在边长为的等边三角形中,点分别是边的中点,于点,连结,则的长为()A. B. C. D.9.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠110.给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,AC=DF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组二、填空题(每小题3分,共24分)11.如图,直线的解析式为,直线的解析式为,为上的一点,且点的坐标为作直线轴,交直线于点,再作于点,交直线于点,作轴,交直线于点,再作于点,作轴,交直线于点....按此作法继续作下去,则的坐标为_____,的坐标为______12.如下图,在△ABC中,∠B=90°,∠BAC=40°,AD=DC,则∠BCD的度数为______.13.已知,则的值为________.14.已知,如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为_________.15.若A(2,b),B(a,-3)两点关于y轴对称,则a-b=_______.16.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若,则的度数为__________.17.如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).18.不等式组的解为,则的取值范围是______.三、解答题(共66分)19.(10分)计算:(x+3)(x﹣4)﹣x(x+2)﹣520.(6分)如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.21.(6分)老师在黑板上写出了一个分式的计算题,随后用手捂住了一部分,如下图所示:(1)求所捂部分表示的代数式;(2)所捂部分代数式的值能等于-1吗?为什么?22.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?23.(8分)某工厂准备在春节前生产甲、乙两种型号的新年礼盒共80万套,两种礼盒的成本和售价如下表所示;甲乙成本(元/套)2528售价(元/套)3038(1)该工厂计划筹资金2150万元,且全部用于生产甲乙两种礼盒,则这两种礼盒各生产多少万套?(2)经过市场调查,该厂决定在原计划的基础上增加生产甲种礼盒万套,增加生产乙种礼盒万套(,都为正整数),且两种礼盒售完后所获得的总利润恰为690万元,请问该工厂有几种生产方案?并写出所有可行的生产方案.(3)在(2)的情况下,设实际生产的两种礼盒的总成本为万元,请写出与的函数关系式,并求出当为多少时成本有最小值,并求出成本的最小值为多少万元?24.(8分)先阅读下列材料,再解答下列问题:材料:因式分解:.解:将看成整体,令,刚原式.再将“”还原,得原式.上述解题用到的是“整体思想”,这题数学解题中常用的一种思想方法,请你回答下列问题,(1)因式分解:_______;(2)因式分解:;(3)请将化成某一个整式的平方.25.(10分)已知:点D是等边△ABC边上任意一点,∠ABD=∠ACE,BD=CE.(1)说明△ABD≌△ACE的理由;(2)△ADE是什么三角形?为什么?26.(10分)老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:(1)求所捂部分化简后的结果:(2)原代数式的值能等于-1吗?为什么?

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】解:A.x2−x−2=x(x−1)-2错误;B.(a+b)(a−b)=a2−b2错误;C.x2−4=(x+2)(x−2)正确;D.x−1=x(1−)错误;故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.2、C【分析】分别根据算术平方根的定义和立方根的定义逐项判断即得答案.【详解】解:A、=9,故本选项计算错误,不符合题意;B、=5,故本选项计算错误,不符合题意;C、=-1,故本选项计算正确,符合题意;D、(-)2=2,故本选项计算错误,不符合题意.故选:C.【点睛】本题考查了算术平方根和立方根的定义,属于基本题目,熟练掌握基本知识是解题的关键.3、B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A、变形的结果不是几个整式的积,不是因式分解;B、把多项式10x2﹣5x变形为5x与2x﹣1的积,是因式分解;C、变形的结果不是几个整式的积,不是因式分解;D、变形的结果不是几个整式的积,不是因式分解;故选:B.【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.4、D【分析】利用平行线的性质和三角形的外角的性质解决问题即可.【详解】解:如图,∵AB∥CD,

∴∠1=∠4,

∵∠3=∠4+∠2,∠2=36°,∠3=80°,

∴∠4=44°,

∴∠1=44°,

故选:D.【点睛】本题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识.5、A【分析】先通分,然后根据分式的加法法则计算即可.【详解】解:===故选A.【点睛】此题考查的是分式的加法运算,掌握分式的加法法则是解决此题的关键.6、D【分析】利用全等三角形的性质即可解决问题.【详解】解:证明:∵AD⊥BC,∴∠BDF=∠ADC,又∵∠BFD=∠AFE,∴∠CAD=∠FBD,在△BDF和△ACD中,∴△BDF≌△ACD(AAS),∴∠DBF=∠CAD=25°.∵DB=DA,∠ADB=90°,∴∠ABD=45°,∴∠ABE=∠ABD﹣∠DBF=20°故选:D.【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、D【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为,∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.8、C【分析】根据题意,先由三角形的中位线求得DE的长,再由含有角的直角三角形求出FD的长,最后由勾股定理求得EF的长即可得解.【详解】∵是等边三角形且边长为4∴,∵∴∴∵点分别是边的中点∴,∵∴∵在中,∴,故选:C.【点睛】本题主要考查了等边三角形的性质,三角形中位线,含有角的直角三角,勾股定理等相关内容,熟练掌握三角形的相关知识点是解决本题的关键.9、D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A、∠C=∠1不能判定任何直线平行,故本选项错误;

B、∠A=∠2不能判定任何直线平行,故本选项错误;

C、∠C=∠3不能判定任何直线平行,故本选项错误;

D、∵∠A=∠1,∴EB∥AC,故本选项正确.

故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.10、C【分析】根据全等三角形的判定方法逐一判断即得答案.【详解】解:①若AB=DE,BC=EF,AC=DF,则根据SSS能使△ABC≌△DEF;②若AB=DE,∠B=∠E,BC=EF,则根据SAS能使△ABC≌△DEF;③若∠B=∠E,AC=DF,∠C=∠F,则根据AAS能使△ABC≌△DEF;④若AB=DE,AC=DF,∠B=∠E,满足有两边及其一边的对角对应相等,不能使△ABC≌△DEF;综上,能使△ABC≌△DEF的条件共有3组.故选:C.【点睛】本题考查了全等三角形的判定,属于基础题型,熟练掌握判定三角形全等的方法是解题的关键.二、填空题(每小题3分,共24分)11、【分析】依据直角三角形“角所对直角边等于斜边的一半”求得B点的坐标,然后根据等腰三角形的性质,求得OB=BA1,最后根据平行于x轴的直线上两点纵坐标相等,即可求得A1的坐标,依此类推即可求得An的坐标.【详解】如图,作⊥轴于E,⊥轴于F,⊥轴于G,∵点的坐标为,∴,,∴,∴,∴,,∵∥轴,

根据平行于轴的直线上两点纵坐标相等,∴的纵坐标为,∵点在直线上,将代入得,解得:,∴的坐标为,∴,,∴,∴,∴,∴,∵∥轴,,∴,根据等腰三角形三线合一的性质知:,∴,∴,,∴的坐标为,同理可得:的坐标为,【点睛】本题考查了一次函数的综合运用.关键是利用平行于x轴的直线上点的纵坐标相等,以及等腰三角形的性质得出点的坐标,得出一般规律.12、10°【分析】由余角的性质,得到∠ACB=50°,由AD=DC,得∠ACD=40°,即可求出∠BCD的度数.【详解】解:在△ABC中,∠B=90°,∠BAC=40°,∴∠ACB=50°,∵AD=DC,∴∠ACD=∠A=40°,∴∠BCD=50°40°=10°;故答案为:10°.【点睛】本题考查了等边对等角求角度,余角的性质解题的关键是熟练掌握等边对等角的性质和余角的性质进行解题.13、1【分析】逆用同底数幂的乘法公式进行变形,然后代入即可得出答案.【详解】故答案为:1.【点睛】本题主要考查同底数幂的乘法的逆用,掌握同底数幂的乘法法则是解题的关键.14、25o【解析】试题分析:根据题意给出的已知条件可以得出△ABC和△ADE全等,从而得出∠B=∠D=25°.15、2【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a=-2.b=-3,然后再计算出a-b即可.【详解】解:∵若A(2,b),B(a,-3)两点关于y轴对称,

∴a=-2.b=-3,

∴a-b=-2-(-3)=2,

故答案为:2.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.16、【分析】延长AB交CF于E,求出∠ABC,根据平行线性质得出∠AEC=∠2=25°,再根据三角形外角性质求出∠1即可.【详解】解:如图,延长AB交CF于E,

∵∠ACB=90°,∠A=30°,

∴∠ABC=60°,

∵GH∥EF,

∴∠AEC=∠2=25°,

∴∠1=∠ABC-∠AEC=35°.

故答案为:35°.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.17、【分析】利用等边三角形的性质和特殊角去解题.【详解】解:等边三角形的周长为1,作于点,的周长=的周长=,的周长分别为故答案为:【点睛】本题考查等边三角形的性质以及规律性问题的解答.18、【分析】根据不等式组的公共解集即可确定a的取值范围.【详解】由不等式组的解为,可得.

故答案为:.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题(共66分)19、﹣3x﹣1.【分析】先根据整式的乘法法则算乘法,再合并同类项即可.【详解】解:原式==.【点睛】本题考查整式的混合运算,解题的关键是熟练掌握混合运算顺序以及相关运算法则.20、(1)证明见解析;(2)∠ACF=90°.【解析】(1)根据△ABC是等边三角形,得出AB=BC,∠ABE+∠EBC=60°,再根据△BEF是等边三角形,得出EB=BF,∠CBF+∠EBC=60°,从而求出∠ABE=∠CBF,最后根据SAS证出△ABE≌△CBF,即可得出AE=CF;(2)根据△ABC是等边三角形,AD是∠BAC的角平分线,得出∠BAE=30°,∠ACB=60°,再根据△ABE≌△CBF,得出∠BCF=∠BAE=30°,从而求出∠ACF的度数.【详解】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABE+∠EBC=60°.∵△BEF是等边三角形,∴EB=BF,∠CBF+∠EBC=60°.∴∠ABE=∠CBF.在△ABE和△CBF中,,∴△ABE≌△CBF(SAS).∴AE=CF;(2)∵等边△ABC中,AD是∠BAC的角平分线,∴∠BAE=∠BAC=30°,∠ACB=60°.∵△ABE≌△CBF,∴∠BCF=∠BAE=30°.∴∠ACF=∠BCF+∠ACB=30°+60°=90°.【点睛】此题考查了等边三角形的性质和全等三角形的判定,关键是根据等边三角形的性质得出∠ABE=∠CBF,掌握全等三角形的判定,角平分线的性质等知识点.21、(1);(2)不能,理由见解析.【分析】(1)根据分式运算的逆运算,表达出所捂部分,再化简即可;(2)令=-1,解分式方程即可,再检验所得的x的值是否使原代数式有意义.【详解】解:(1)原式====,∴所捂部分的代数式是.(2)由题意得:=-1经检验是原分式方程的解.当时,分式没有意义,所以原代数式的值不能等于-1.【点睛】本题考查了分式的化简求值问题,解题的关键是逆向表达出所捂部分,熟练掌握分式运算的法则.22、(1)甲、乙两人每天各加工40、60个这种零件;(2)甲至少加工了1天.【分析】(1)设乙每天加工个这种零件,则甲每天加工个这种零件,然后根据题意列出分式方程,求解并检验即可得出答案;(2)设甲加工了天,根据题意可列出一个关于y的不等式,解不等式即可找到y的最小值.【详解】(1)设乙每天加工个这种零件,则甲每天加工个这种零件.根据题意得解得检验:当时,.所以,原分式方程的解为所以答:甲、乙两人每天各加工40、60个这种零件.(2)设甲加工了天.根据题意得解得∴至少取1.答:甲至少加工了1天.【点睛】本题主要考查分式方程的应用和一元一次不等式的应用,能够根据题意列出分式方程和不等式是解题的关键.23、(1)甲礼盒生产30万套,乙礼盒生产50万套;(2)方案如下:①;②;③;(3)时,最小值为万元.【分析】(1)设甲礼盒生产万套,乙礼盒生产万套,从而列出相应的方程,即可解答本题;(2)根据表格可以求得A的利润与B的利润,从而可以求得总利润,写出相应的关系式,再利用正整数的特性得出可行的生产方案;(3)根据表格的数据,列出相应的函数关系式,利用一次函数的增减性即可成本的最小值.【详解】(1)设甲礼盒生产万套,乙礼盒生产万套,依题意得:,解得:,答:甲礼盒生产30万套,乙礼盒生产50万套;(2)增加生产后,甲万套,乙万套,依题意得:,化简得:,∴方案如下:;;;答:有三种方案,,,;(3)依题意得:,化简得:,∵,∴随的增大而增大,∴取最小值时最小,∴时,(万元)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论